
Goals

Developing an Automated Trading API
Madeline F. Briere & John Board, Ph.D.

Final Product

References

Abstract Background Discussion

Acknowledgements
Intellectual property of Fitch & Co.

Completed as Independent Study for Duke
University

This project centers on the
development of an Application
Programming Interface[1] for the
automated trading of positions in
the stock market. An external
strategy component (not discussed
here) is used to generate a map of
trading instructions, which serves
as input for the API. The Interactive
Brokers Trader Workstation[2] is
then used to submit the
corresponding requests. The final
product is capable of queuing jobs,
placing orders, and requesting
market data. It utilizes extensive
error handling, resulting in a robust
and effective application.

Project Goals:
To develop an API that will:
• Interface between a trading

strategy and a trading
application

• Complete requests and return
current market data

• Be robust and capable of
handling failures (i.e., failure
to complete orders, invalidated
data, application failure)

Team Goals:
To produce a flexible platform:
• For automated trading of stock

market positions
• Using an interchangeable

strategy
• Able to run using both paper

trading (for testing) and live
trading (for actual trials)

Fitch & Co.

API Requirements
High-Level

Submit TWS
requests

(1) Place orders to BUY/SELL/SHORT
positions,

(2) Request current market data (prices, daily
returns)

Receive TWS
responses

(1) Record the completion of jobs,
(2) Receive and store responses to requests

Interface with
Strategy

Translate mapping of portions/positions to
orders through the TWS application

Low-Level
Handle
failures

(1) Consistently: catching identical failures in
same way,
(2) Robustly: catching all potential failures,
(3) Verbosely: returning information regarding
the failure to the user

Maintain job
order

Submit requests in the order they are placed to
maintain sequential logic

Parallelize
tasks**

Complete independent tasks in parallel for
efficiency

Figure 1: Requirements for the desired API, which communicates between TWS and a
flexible strategy component
**Parallelization is more relevant to efficiency than functionality (the focus of this stage)

Figure 2: UML Diagram of the final API product, excluding external/imported resources such as the IB API [4]

• The final API layout can be seen in Figure 2
• JobHandler: Sends Jobs to TWS via JobQueue
• ResponseHandler: Handles responses from TWS
• Account: Stores account data (positions, available funds, etc.)
• TwsApiImpl: Accepts a strategy-based Portfolio and updates

the connected account to reflect the desired portfolio
• The final project satisfies all objectives shown in Figure 1

(except for parallelization)
• Final distributed work flow shown in Figure 3

• Algorithmic Trading is a method of executing large
batches of automated and pre-programmed trading
instructions[3]

• Using intelligent strategies and drawing on existing
market variables, one can algorithmically predict the
instructions that will yield the highest financial returns

• An Application Programming Interface (API) is used for
communication between various software components[1]

• In this project, these components are the Interactive
Brokers Trader Workstation (TWS) and a strategy
component (not described here)

• TWS submits real-world trading instructions
• The API must submit requests to TWS and handle the

responses of these requests
• The API must also handle erroneous requests and the

resulting application errors

The final product is capable of
consistent order placement and
market data retrieval. It satisfies
the majority of the initial
requirements, leaving only
parallelization left to complete.
This will be more relevant when
we consider efficiency, rather than
functionality. In the upcoming
months, the functionality of the
API will be expanded to
accommodate queries from the
strategy portion of the product.
Further error-catching will be
added to protect against the
placement of erroneous
transactions. The end goal is to
switch from paper trading to live
trading and see actual returns.

1. Elsevier. “What's an API? 5 Things You
Need to Know to Stay Current.” Elsevier
Connect,
www.elsevier.com/connect/whats-an-api-
5-things-you-need-to-know-to-stay-
current.

2. “Integrated Investment
Management.” Low-Cost Online Trading |
Interactive Brokers,
www.interactivebrokers.com/en/home.php.

3. “Definition of ‘Algo or Algorithmic
Trading’ - NASDAQ Financial
Glossary.” NASDAQ.com,
www.nasdaq.com/investing/glossary/a/alg
o-trading.

4. “IB API.” IB API | Interactive Brokers,
www.interactivebrokers.com/en/index.php
?f=5041.

Figure 3: Distributed work flow: (1) Stock markets, (2) TWS, (3) (Multiple instances of) our trading
application (where JH is the JobHandler and RH is the ResponseHandler)

NASDAQ
NYSE

…

TWS

In
te

rn
al

 A
PI IB

 A
PI

TRADING
API

JH
R

H

ST
R

A
T

E
G

Y

MARKETS

Job

status: Status
id: int
type: JobType

+ Job(): Job*
+ action(EC : EClientL0*): void
+ name(): string

JobQueue

+ jobs: list<Job*>*

+ JobQueue() : JobQueue*
+ peekNext(): Job*
+ peekLast(): Job*
+ push(job: Job*): void
+ setJobStatus(...): void
+ getMatches(job: JobType): list<Job*>
+ getMatch(id: int): Job*

JobHandler

+ jobs: JobQueue*
+ client: EClientL0*

+ JobHandler(j : JobQueue*,
 EC: EClientL0*): JobHandler*
+ addJob(job: Job*): void
+ checkJob(job: Job*): Status
+ submitJobs(): void

ResponseHandler

+ jobs : JobQueue*
+ account: Account*

+ ResponseHandler (jobs: JobQueue*,
 account: Account*)

<<Interface>>
EWrapperL0

+ client : EClient*

+ tickPrice (id: TickerId,
 field : TickType,
 price : double) : void
+ connectionOpened() : void
+ connectionClosed () : void
+ error (id : int, errorCode : int,
 errorString : string) : void
+ historicalData (reqId: TickerId,
 date : string, ...) : void
+ orderStatus (orderId: OrderId,
 status: string, ...) : void
+ position (account: string,
 contract : Contract,
 position : int,
 avgCost : double) : void

Account

+ availableFunds: double
+ positions: list<Position*>

Position

+ position : int
+ cost : double
+ symbol : string
+ type : string

TwsApiImpl

+ responses : ResponseHandler *
+ jobs : JobHandler *
+ account : Account *

+TwsApiImpl() : TwsApiImpl *
+ bulkInvest(selected : portfolio) :
 unordered_map <string, bool>
+ checkPrice (symbol : string) : double

UsePortfolio

+ stock : list <Stock>

Stock

+ symbol : string

+ portion: double

ConnectJob

+ cType : Connection
DisconnectJobAccountJob

Position Job

PriceJob

+ symbol : string

OrderJob

clientId : long
symbol : string
orderAction : string
amount : long

