
Duke University

ECE Independent Study

Automatic Speech Recognition
using the Kaldi Toolkit

Madeline Briere

supervised by
Dr. Michael Gustafson

February 24, 2018

Contents

1 Abstract 3

2 Project Goals 4

3 Background 6
3.1 What is Automatic Speech Recognition? 6
3.2 What is Kaldi? . 7

4 Kaldi: Automatic Speech Recognition Toolkit 8
4.1 Kaldi Layout . 8

4.1.1 Decoding Graph . 8
4.1.2 Acoustic GMMs . 9

4.2 Decoding . 9
4.3 Reader Caveat . 9
4.4 Organization . 10
4.5 Installation . 10
4.6 Data Preparation . 10

5 Initial Assessment of Kaldi 12

6 Digits Example 13
6.1 Introduction . 13
6.2 Resources . 13
6.3 Preparing Audio Data . 13
6.4 Language Data . 14
6.5 SRI Language Model (SRILM) 15
6.6 A Note on Sampling Rates . 15
6.7 The “Run” Script . 16
6.8 Interpreting Script Results . 18

6.8.1 Decoding Logs . 18
6.8.2 Word Error Rates . 18

7 VoxForge Example 21
7.1 Introduction . 21

7.1.1 What is VoxForge? . 21
7.1.2 VoxForge Dataset . 21

7.2 Dependencies . 21
7.3 (Optional) Memory Considerations 21
7.4 Parallelization with Sun GridEngine 22

7.4.1 Why do I need to do this? 22
7.4.2 Assessing Machine Capabilities 22
7.4.3 Installation . 23
7.4.4 Debugging SGE . 25

7.5 VoxForge Output . 26

1

8 CMU AN4 Example 28
8.1 Introduction . 28
8.2 CMU Results . 28

9 How Does Kaldi Measure Up? 30

10 Conclusion 32

11 Appendix 34
11.1 Basic audio sorting script, sort.sh 34
11.2 Acoustic Data Script, acoustic.sh 34
11.3 Digits resample.m script . 37
11.4 Digits run.sh script . 37
11.5 Digits run.sh Output . 40
11.6 CMU AN4 Data Preparation Script, prep.sh 48

2

1 Abstract

This project explores the current technology available for Automatic Speech
Recognition (ASR), the process of converting speech from a recorded audio
signal to text [11]. The primary goal is to identify a toolkit for use in the con-
struction of a personal assistant system, similar to Amazon’s Alexa, but with a
smaller and more targeted lexicon meant to increase accuracy. In particular, we
explore the Kaldi Speech Recognition Toolkit, written in C++ and licensed un-
der the Apache License v2.0, developed for use by speech recognition researchers
[17]. This toolkit was chosen on the grounds of extensibility, minimal restrictive
licensing, thorough documentation (including example scripts), and complete
speech recognition system recipes. In this project, we explore the ASR pro-
cess used in Kaldi (including feature extraction, GMMs, decoding graphs, etc.).
With this foundation, we walk through three extensions of the Kaldi toolkit:
(1) the Digits example, using 1500 audio recordings of the digits 0-9, (2) the
VoxForge example[3] and (3) the CMU AN4 alphanumeric example[2]. This
project demonstrates that Kaldi can be extended in simple and complex situa-
tions and is flexible and easy to use in development. Given the results of this
analysis, we conclude that Kaldi is a viable choice for future extension.

3

2 Project Goals

The goal of this project is to develop a prototype system for Automatic Speech
Recognition (ASR; the process of converting speech from a recorded audio signal
to text [11]) satisfying the following requirements:

1. Easy to develop and extend

2. Lightweight and minimal

3. Accurate and fast (less than 10 second wait time)

4. Maintains a balance between a homegrown and outsourced system

First and foremost, this system must be easy to develop and extend. If we
cannot work with the system (because it is incredibly esoteric and/or not well-
documented), it is virtually useless. Likewise, if we cannot extend the system
with custom data (which is integral to our system design), the system will not
work for our purposes.

In addition, this product must be a lightweight and minimal ASR system –
we need to maximize accuracy for a small state space of input options (geared
towards the client), using a small device and streamlined system. The user
should be able to request something within a small state-space of options and
receive feedback accordingly with high accuracy. For instance, if the client were
using such a system in a car shop, requests such as “purchase a Chevy Malibu
A/C Compressor” should be parsed and carried out (e.g., through Amazon’s
marketplace). We must minimize run time so that the system can be used
without inconvenience (for instance, a response time over 10 seconds would be
non-viable).

Additionally, the resulting ASR system must maintain a delicate balance
between the two ends of the system development spectrum:

1. A homegrown system: A system developed from scratch, using other
resources only minimally

Pros: Ownership, intimate understanding of system

Cons: Less well-tested (more buggy), less extensive functionality

2. A borrowed system: Bootstrapping another system to produce the
desired functionality

Pros: Well-tested, more extensive functionality

Cons: Potential legality issues, lack of ownership

Given all of these requirements, we move forward with our project in search
of a usable toolkit. In the previous part of this exploration, we looked into
the signal processing side of the system. We broke down the process of Mel-
Frequency Cepstral Coefficients (MFCCs) feature extraction and confirmed the

4

viability of this type of processing for ASR [8]. Instead of breaking down all of
the mathematical steps as we did before, we now seek a high-level understand-
ing of a full-process system.

We explore the Kaldi Speech Recognition Toolkit [17], a well-documented
ASR toolkit written in C++ that uses MFCCs for feature extraction. This
system deals with the entire ASR process, from WAV file to text transcription.
This toolkit seems the perfect solution to the homegrown vs. outsourced de-
bate. Hence, we hope to come away from the exploration with an early-stage
extension of Kaldi that is viable for use in the aforementioned product (i.e., sat-
isfying the stated requirements). Of course, this will still require knowledge of
the system, as development in Kaldi is largely the authorship of scripts carrying
out the stages of speech recognition.

In order to completely explore Kaldi, we hope to do the following:

1. Outline the layout of Kaldi

Installation

Organization

Sub-components of Kaldi

Data preparation (using custom data)

Decoding the results

2. Walk through several examples using the Kaldi Toolkit

Introductory example: Using 1500 audio files of the digits 0-9

Advanced example: Using VoxForge dataset/acoustic model (training
on more complex data) [3]

Additional example: Using CMU AN4 census data (to recognize al-
phanumeric queries) [2]

The final result should be a well-rounded understanding of the Kaldi system.

5

3 Background

3.1 What is Automatic Speech Recognition?

Automatic Speech Recognition (ASR) is “the process of converting speech from
a recorded audio signal to text” [11]. The particular type of ASR we are in-
terested in is the personal assistant ASR system. These types of systems are
seen across households today, in products like Amazon’s Alexa, and must be
able to respond quickly, accurately and helpfully to a user. We are interested in
the “understanding” component of this system – the part of the assistant that
“understands” what the user is saying (by translating the query from speech to
text) and searching its resources for a response.

The typical model for ASR can be found in Figure 1. We start with an audio
waveform and extract a series of “features,” representations of small frames of
the speech function. These features, along with a pronunciation dictionary to
match features to phones, can be used to generate acoustic models (the likeli-
hood of an observed acoustic signal given a word sequence). The likelihood of
an observed word sequence is derived from a language model.

Figure 1: Typical process of Automatic Speech Recognition [12]

Automatic Speech Recognition is a complicated process and will not be
completely outlined in this paper. Rather, we will explore the steps involved in
interacting with an ASR system like Kaldi as a client. Should you be interested
further in the theory, see the prior paper in this series [8] or other papers de-
voted to the theory of Automatic Speech Recognition (such as Automatic Speech
Recognition by Gruhn et. al [11]).

6

3.2 What is Kaldi?

The Kaldi Speech Recognition Toolkit is a toolkit for speech recognition written
in C++ and licensed under the Apache License v2.0. It is intended for use
by speech recognition researchers. At its inception in 2009, this toolkit was
designed for “Low Development Cost, High Quality Speech Recognition.” Its
founders felt that “a well-engineered, modern, general-purpose speech toolkit
with an open license would be an asset to the speech-recognition community”
[17]. Since its initial release, Kaldi has been maintained and developed largely
by Daniel Povey (Researcher at Microsoft and John Hopkins University).

7

4 Kaldi: Automatic Speech Recognition Toolkit

4.1 Kaldi Layout

The general layout of the Kaldi Toolkit is displayed in Figure 2. It accepts a
set of customizable audio data as input, along with accompanying language and
acoustic data (see the Data Preparation section).

Figure 2: Layout of Kaldi Toolkit (based on NTNU diagram and Kaldi docu-
mentation) [17] [9]. Note that this diagram is hugely simplifying – optimizations
and adjustments (e.g., using alignments) are not shown.

We may note that the input data is used to generate two main Kaldi com-
ponents, the decoding graph and final acoustic GMM.

4.1.1 Decoding Graph

The first central element is a decoding graph (of the HCLG format; see Fig.
2). The H represents the Hidden Markov Model (HMM) structure, where an
HMM is used to model a Markov Process (a stochastic process satisfying the
Markov property of “memorylessness”). In this case, the structure map states to
phonemes. The C represents contextual information about the phones (i.e., the
articulation of a phone may change given surrounding phones). The L represents
the lexicon, which maps each possible word to a set or several sets of phones.

8

Finally, the G represents the language model (or grammar) which estimates
the probability of a given word sequence. Together, these components form a
decoding graph which can be used to match a given input vector to a resulting
transcription. The decoding graph for our Digits example, for instance, might
look something like the network shown in Figure 3.

Figure 3: An example decoding graph with the words “one,” “two,” and “three”
in the lexicon [12]

4.1.2 Acoustic GMMs

The second element is a final Gaussian Mixture Model (GMM). A GMM is a
probabilistic model, in this case used to represent an acoustic output. Our final
result in this process will be a series of GMMs matching to each state in our
decoding network. Mapping the HMM structure to this GMM structure is done
in the run script of each example [17].

It can be noted that we will primarily observe two types of GMM training:
triphone and monophone. The first uses contextual information while the latter
does not [10].

4.2 Decoding

Together, these pieces (HCLG.fst and final.mdl) can be fed into the decoder,
along with testing features to produce transcriptions [17]. During the run pro-
cess, the system will generate a series of transcriptions, documented in the
decoding logs, which can be compared to the expected results manually or via
the generated word error rate files.

4.3 Reader Caveat

As users of Kaldi, rather than true developers of Kaldi, we will focus on the
start and end points of this flow, rather than the mechanics of the Kaldi training

9

algorithms (if you have background in GMMs, decoding graphs, etc., the Kaldi
documentation may be of interest to you [17]). Of primary interest to us are the
customizable input (discussed in Data Preparation) and the decoding results.

4.4 Organization

The relevant Kaldi directories are organized in the following fashion:

1. egs: A series of example scripts allowing you to quickly build ASR systems
for over 30 popular speech corpora (documentation is attached for each
project)

2. misc: Additional tools and supplies, not needed for proper Kaldi func-
tionality

3. src: Kaldi source code

4. tools: Useful components and external tools

We will be working in the egs folder, where all of the Kaldi extensions are
housed. We will also use some of the scripts in the tools folder, which help with
installation.

4.5 Installation

Kaldi is housed on Github, so installation is as easy as cloning the project, using
the below command:

1 git clone https://github.com/kaldi-asr/kaldi.git kaldi --origin ...
upstream

2 cd kaldi

To retrieve any new updates, users need only pull from this repo and refresh
their project.

Actually running Kaldi will require building the project – this can be accom-
plished by following the README instructions and using the relevant Makefiles.

4.6 Data Preparation

Data preparation is the most relevant component of the Kaldi layout to this
analysis. Because we seek to feed in customized data, we must understand the
requirements of the system.

In each extension, we have to define:

1. Audio data (training and testing)

10

2. Acoustic data

spk2gender: [speakerID] [gender]

wav.scp: [utteranceID] [file path]

text: [utteranceID] [transcription]

utt2spk: [utteranceID] [speakerID]

corpus.txt: [transcription]

3. Language data

lexicon.txt: [word] [phone(s)]

nonsilence phones.txt: [phone]

silence phones.txt: [phone]

optional silence.txt: [phone]

4. (Optional) Configuration

5. (Optional) Language model toolkit

We will see in the examples how such files may be manually or automatically
generated.

11

5 Initial Assessment of Kaldi

An initial assessment of Kaldi (see Figure 4) reveals it to be a viable system
for the desired product. Kaldi includes a variety of utility scripts, including
functionalities such as feature extraction, data preparation, transition modeling,
construction of decoding graphs, and acoustic modelling. Extensions of Kaldi
can incorporate custom training and testing data and use the corresponding
lexicon. These extensions can still utilize the provided scripts, substituting in
various decoding types, language models, etc.

Figure 4: Assessing the viability of Kaldi (note that speed was not considered
in this analysis) [17] [9].

12

6 Digits Example

6.1 Introduction

The goal for this example is to develop a simple ASR system using the Kaldi
toolkit with a small, targeted dataset (about 1500 audio files). We hope to
explore some potential issues and the general steps involved in the creation of
a personalized ASR system.

In this example, we will use a series of audio files from various speakers, each
containing an individual spoken digit from 0 to 9. Note that, in this example,
a word is equivalent to a sentence and there is no sentence context (with only
one word per file). This corpora is composed of several trials per speaker/digit.
The goal is to train the system to recognize new audio files in which the speaker
says a single digit from 0 to 9.

6.2 Resources

The tutorial in this example is based upon the “Kaldi for Dummies Tutorial” on
the Kaldi site [17]. Our example goes slightly further in depth in some regions
(especially the script results) and explores potential issues in the process.

This example requires audio data and, for the sake of time, we outsource
the task of collection by using the audio files from the free-spoken-digit-dataset
Github repository[13]. The audio files in this repository are collected from three
males (Theo, Jackson, and Nicolas), where each individual speaks a single digit
per WAV file. Each speaker records 50 files per each digit (0-9), producing 1500
audio files.

6.3 Preparing Audio Data

Audio samples were retrieved from the free-spoken-digit-dataset above, but it
must be noted that there were certainly some issues with the given dataset in
terms of incorporation into the Kaldi system.

Firstly, the data must be named in the fashion: speaker digit iteration.wav.
This is done for sorting purposes – sorting by speaker id ends up being much
more useful than sorting by digit. The data files in Jakobovski’s repository
currently have the format digit speaker iteration.wav, so this format must be
changed with a simple bash script that swaps the first element with the second
element. Following this renaming process, we have to sort the audio files into
speaker folders. This is accomplished using the sort.sh script in the Appendix.
The resulting speaker folders must be placed in the data/test or data/train fold-
ers.

13

https://github.com/Jakobovski/free-spoken-digit-dataset

The next step is to generate the acoustic data. Luckily, because we have so
few speakers and a very clear state-space of audio transcriptions, this data can
be generated using a bash script (acoustic.sh in the Appendix). This script:

1. Organizes the data folder

2. Generates the spk2gender file for the test and train folders

3. Generates the wav.scp file for the test and train folders, matching utter-
ance IDs to full paths in the directory

4. Generates the text file for the test and train folders, matching utterance
ID to a transcription

5. Generates the utt2spk file for the test and train folders, matching utterance
ID to speaker

6. Generates the corpus, corpus.txt (all possible text transcriptions in the
ASR system)

By supplying the audio files and its accompanying acoustic data, we give the
system a way to map new audio files to text transcriptions, given this particular
system.

6.4 Language Data

The language data for this example can be manually entered. The lexicon
(shown below) is a phonetic transcription of every possible word in the lexicon.

1 !SIL sil
2 <UNK> spn
3 eight ey t
4 five f ay v
5 four f ao r
6 nine n ay n
7 one hh w ah n
8 one w ah n
9 seven s eh v ah n

10 six s ih k s
11 three th r iy
12 two t uw
13 zero z ih r ow
14 zero z iy r ow

The non-silence phones are those phones used that are not categorized as
silence phones.

1 ah
2 ao
3 ay

14

4 eh
5 ey
6 f
7 hh
8 ih
9 iy

10 k
11 n
12 ow
13 r
14 s
15 t
16 th
17 uw
18 w
19 v
20 z

The list of silence phones, used to represent silence or unknown sounds, is a
short one (shown below):

1 sil
2 spn

In the optional silence phones text file, we just put sil.

6.5 SRI Language Model (SRILM)

This particular example uses the SRI Language Model (SRILM) Toolkit [5].
SRILM is “a toolkit for building and applying statistical language models (LMs),
primarily for use in speech recognition, statistical tagging and segmentation, and
machine translation” [5]. Luckily, Kaldi has an install srilm.sh file in the extras
folder, which can be run to bypass manual SRILM installation.

6.6 A Note on Sampling Rates

If you choose to use the same data as this example, you may have to re-sample
the audio files. The language model used by SRILM in this example expects a
16kHz sampling rate, while the digit audio files are sampled at 8kHz. You can
change the SRILM modeling sample rate, or you can re-sample the audio files
with a script. See the Appendix for resample.m, a simple MATLAB script that
re-samples the entire folder of digit audio files using piece-wise cubic hermite
interpolation. As a note: It is important to be careful about resampling. Insert-
ing a buffer “0” in between every data point in the audio, for instance, would
allow the program to run, but would create interference around the Nyquist
frequency and potentially produce erroneous results. Another option for re-
sampling is SoX, the “Swiss Army Knife of Audio Manipulation,” to re-sample
the audio in the command line [6].

15

6.7 The “Run” Script

The run.sh script in each Kaldi example is used to execute all steps of the
process, including data preparation, feature extraction, training and decoding.
The script for Digits is relatively simple, and shows the general Kaldi process.
Let’s take a look at the general outline below (note that the unabridged version
can be found in the appendix):

1 # General organizational preparation beforehand (not included)
2

3 echo "===== PREPARING ACOUSTIC DATA ====="
4

5 # Needs to be prepared by hand (or using self written scripts):
6 #
7 # spk2gender [<speaker-id> <gender>]
8 # wav.scp [<uterranceID> <full path to audio file>]
9 # text [<uterranceID> <text transcription>]

10 # utt2spk [<uterranceID> <speakerID>]
11 # corpus.txt [<text transcription>]
12

13 # Making spk2utt files
14 utils/utt2spk to spk2utt.pl data/train/utt2spk > data/train/spk2utt
15 utils/utt2spk to spk2utt.pl data/test/utt2spk > data/test/spk2utt
16

17 echo "===== FEATURES EXTRACTION ====="
18

19 # Making feats.scp files
20 mfccdir=mfcc
21 steps/make mfcc.sh --nj $nj --cmd "$train cmd" data/train ...

exp/make mfcc/train $mfccdir
22 steps/make mfcc.sh --nj $nj --cmd "$train cmd" data/test ...

exp/make mfcc/test $mfccdir
23

24 # Making cmvn.scp files
25 steps/compute cmvn stats.sh data/train exp/make mfcc/train $mfccdir
26 steps/compute cmvn stats.sh data/test exp/make mfcc/test $mfccdir
27

28 echo "===== PREPARING LANGUAGE DATA ====="
29

30 # Needs to be prepared by hand (or using self written scripts):
31 #
32 # lexicon.txt [<word> <phone 1> <phone 2> ...]
33 # nonsilence phones.txt [<phone>]
34 # silence phones.txt [<phone>]
35 # optional silence.txt [<phone>]
36

37 # Preparing language data
38 utils/prepare lang.sh data/local/dict "<UNK>" data/local/lang ...

data/lang
39

40 echo "===== LANGUAGE MODEL CREATION ====="
41 echo "===== MAKING lm.arpa ====="
42

43 #Check that SRILM installed excluded
44

16

45 local=data/local
46 mkdir $local/tmp
47 ngram-count -order $lm order -write-vocab ...

$local/tmp/vocab-full.txt -wbdiscount -text ...
$local/corpus.txt -lm $local/tmp/lm.arpa

48

49 echo "===== MAKING G.fst ====="
50

51 lang=data/lang
52 arpa2fst --disambig-symbol=#0 ...

--read-symbol-table=$lang/words.txt $local/tmp/lm.arpa ...
$lang/G.fst

53

54 echo "===== MONO TRAINING ====="
55

56 steps/train mono.sh --nj $nj --cmd "$train cmd" data/train ...
data/lang exp/mono | | exit 1

57

58 echo "===== MONO DECODING ====="
59

60 utils/mkgraph.sh --mono data/lang exp/mono exp/mono/graph | | ...
exit 1

61 steps/decode.sh --config conf/decode.config --nj $nj --cmd ...
"$decode cmd" exp/mono/graph data/test exp/mono/decode

62

63 echo "===== MONO ALIGNMENT ====="
64

65 steps/align si.sh --nj $nj --cmd "$train cmd" data/train ...
data/lang exp/mono exp/mono ali | | exit 1

66

67 echo "===== TRI1 (first triphone pass) TRAINING ====="
68

69 steps/train ∆s.sh --cmd "$train cmd" 2000 11000 data/train ...
data/lang exp/mono ali exp/tri1 | | exit 1

70

71 echo
72 echo "===== TRI1 (first triphone pass) DECODING ====="
73 echo
74

75 utils/mkgraph.sh data/lang exp/tri1 exp/tri1/graph | | exit 1
76 steps/decode.sh --config conf/decode.config --nj $nj --cmd ...

"$decode cmd" exp/tri1/graph data/test exp/tri1/decode
77

78 echo "===== run.sh script is finished ====="

This process can be broken down into a series of steps, starting at data
preparation and continuing to training and decoding:

1. Preparing acoustic data (using the audio files)

2. MFCC feature extraction using train and test data

3. Preparing language data (relating to the possible phones seen and the
breakdown of words into phones)

4. Language model creation (here, using SRILM)

17

Making lm.arpa (the language model, as an ARPA file1)

Making G.fst (converted from lm.arpa to a FST file2)

5. Monophone Speech Recognition: does not include any contextual infor-
mation about the preceding or following phone [10]

Training

Decoding

Alignment

6. Triphone Speech Recognition: does include any contextual information
about the preceding or following phone

Training (first pass)

Decoding (first pass)

We can see a sample output in the Appendix under Digits run.sh Output. It
is too long to include here.

6.8 Interpreting Script Results

6.8.1 Decoding Logs

One easy way to observe the script’s functionality is to look at the decoding
logs generated via the script. In the logs, we can see the utterance ID paired to
the predicted transcription (seen in Figure 5). In our example log, we can see
successful transcriptions (in green) and failed transcription (in red).

6.8.2 Word Error Rates

Another way to assess the script results is to look at the resulting Word Error
Rates. During the monophone and triphone decoding phases, the script gener-
ates a series of Word Error Rates (WER). The WER is used to measure the
accuracy of the ASR system. The WER is calculated as the minimum edit dis-
tance between the output of the ASR system and the reference transcriptions.
The relevant edit operations are substitution, deletion and insertion [16]. The
expression for WER is shown below in Equation 1.

WER = 100 ∗ min dist(decoded(a), t, edit op = sub, del, ins)

num words(t)
(1)

Because WER is an error-based measurement, the ideal WER would be 0
– indicating no deviation between the ASR output and the reference transcrip-
tion. We can see the WER in action by altering the input of our script slightly.

1An ARPA file uses log probabilities to convey phrase probabilities [14]
2An FST file is a binary representation of the finite state transducer/acceptor [20]

18

Figure 5: A sample log from the digits example, showing transcriptions for
several audio files of the number “7”

In Table 1, we see the WER results given completely overlapping equivalent
test and train data. We see minimal WER (.40 percent for monophone, .27
percent for triphone). This is because our system has been trained to handle
the test input. We expect a very low error rate for this case.

Meanwhile, in Table 4, we see the results given non-overlapping test and
train data (using Theo and Nicolas for training and Jackson for testing). The
WER is now much higher (between 7.40 ad 10.80 percent across the monophone
and triphone training), indicating a much larger number of deviations. This is
because the system has not yet seen Jackson’s audio data, and must determine
the output based only on the data it has seen before (Theo and Nicolas). It can
also be noted that the triphone results are not necessarily better than the mono-
phone results in this case because the words used (e.g., “one”, “two”, “three”)
don’t have any real context in the audio files. Hence, using contextual informa-
tion doesn’t improve the decoding WER.

19

Table 1: Results with equivalent test and train data

Table 2: Monophone Training
WER Percent Ratio

WER 7 0.40 6/1500
WER 8 0.40 6/1500
WER 9 0.40 6/1500
WER 10 0.40 6/1500
WER 11 0.40 6/1500
WER 12 0.40 6/1500
WER 13 0.40 6/1500
WER 14 0.40 6/1500
WER 15 0.40 6/1500
WER 16 0.40 6/1500
WER 17 0.40 6/1500

Table 3: Triphone Training
WER Percent Ratio

WER 7 0.27 4/1500
WER 8 0.27 4/1500
WER 9 0.27 4/1500
WER 10 0.27 4/1500
WER 11 0.27 4/1500
WER 12 0.27 4/1500
WER 13 0.27 4/1500
WER 14 0.27 4/1500
WER 15 0.27 4/1500
WER 16 0.27 4/1500
WER 17 0.27 4/1500

Table 4: Results with non-overlapping train and test data

Table 5: Monophone Training
WER Percent Ratio

WER 7 7.40 37/500
WER 8 7.40 37/500
WER 9 7.20 36/500
WER 10 7.60 38/500
WER 11 8.00 40/500
WER 12 8.40 42/500
WER 13 8.40 42/500
WER 14 9.20 46/500
WER 15 9.80 49/500
WER 16 10.20 51/500
WER 17 10.80 54/500

Average 8.58 43/500

Table 6: Triphone Training
WER Percent Ratio

WER 7 9.60 48/500
WER 8 9.40 47/500
WER 9 9.40 47/500
WER 10 9.40 47/500
WER 11 9.60 48/500
WER 12 9.40 47/500
WER 13 9.00 45/500
WER 14 9.40 47/500
WER 15 8.80 44/500
WER 16 8.40 42/500
WER 17 8.40 42/500

Average 9.19 46/500

20

7 VoxForge Example

7.1 Introduction

7.1.1 What is VoxForge?

VoxForge is an open source acoustic model (including a huge speech corpus),
initially set up to collect transcribed speech for use with Free and Open Source
Speech Recognition Engines (on Linux, Windows and Mac) [3]. VoxForge has
similar aims to Kaldi in that it seeks to provide acoustic models and transcribed
audio data without restriction, in order to contribute to current speech recog-
nition engines.

7.1.2 VoxForge Dataset

Unlike our simple example using single digits, VoxForge utilizes a more difficult
dataset, as characterized by the following features:

1. More complicated syntax, grammar, and lexicon

2. Longer transcriptions per audio file (a paragraph vs. a single word)

3. Massive amounts of total audio data (around 75 hours of speech)

4. Submitted from varied sources, creating more diversity in tone, volume,
dialect, etc. and increased potential for errors

Luckily, we do not have to generate or format this dataset ourselves (as we did
before).

7.2 Dependencies

The VoxForge Kaldi example has several dependencies which must be installed
before executing the run.sh script. These can be found in the prep script below:

1 sudo apt-get install flac
2 sudo apt-get install python-dev
3 sudo apt-get install swig
4 sudo apt-get install pip
5 pip install numpy
6 extras/install sequitur.sh

The run.sh will fail without any of these libraries.

7.3 (Optional) Memory Considerations

It should be noted that the VoxForge dataset in its entirety takes up 25GB of
space. If you have enough space on your machine, you may skip this section. If
you are working with limited space (on a virtual machine, for example, as will

21

be explored in this section), this exploration may be useful.

This particular study was undertaken using a virtual machine with only 2GB
of base memory (slow, indeed). In order to undertake some of the more complex
examples, it was necessary to mount additional storage in the VM.

Duke University allocates a CIFS home directory space for each student,
so it was possible to mount this directory space to the VM without having to
alter the VM or create room for additional storage. The steps to do so looked
something like this:

1 sudo apt-get update
2 sudo apt-get install cifs-utils -y
3 sudo mkdir /srv/homedir #Create directory for external CIFS storage
4 sudo mount -t cifs -o username=USER,password=PASSWORD,domain=WIN ...

//homedir.oit.duke.edu/.../srv/homedir

Introducing this type of complexity can add new sources of errors. CIFS
does not support the creation of symbolic links, which are used in Kaldi, so a
work-around had to be built in order to accommodate the external storage. To
get around this, we create an additional folder in the same directory as the CIFS
mounted directory and funnel our generated symbolic links into this directory.
Symbolic links do not take up enough memory for this to be a problem. We
then direct all future symbolic links to this directory.

7.4 Parallelization with Sun GridEngine

7.4.1 Why do I need to do this?

This example is particularly interesting because it is much more complex than
introductory examples: it has a lexicon of around 16,000 words and required
the use of the Sun Grid Engine for parallelization. This platform let’s us split
up jobs across multiple CPUs using a queue system.

7.4.2 Assessing Machine Capabilities

Beginning this installation process, it is important to know the capabilities of
the machine/cluster with which you are working. The number of CPUs and
amount of memory available are of particular importance. To determine this
information, type the following command:

1 grep MemTotal /proc/meminfo #Total memory
2 grep proc /proc/cpuinfo | wc -l #Number of CPUs

22

This information should inform the value of ram free (discussed in the next
section) and the variables in the cmd.sh script, which dictate the size of jobs
passed to the train, decode and make-graph scripts. The number of CPUs
should impact how many jobs your program can run at the same time – this is
defined in run.sh as numJobs.

7.4.3 Installation

As mentioned prior, the difficulty in this example lies in dealing with massive
amounts of complex data required to run the system. To combat this issue,
Kaldi incorporates the Sun GridEngine (SGE) in order to parallelize tasks [4]
(the Kaldi site offers guidance on this topic [17]). In this system, a queue
management software runs on a master node, while a different set of programs
run on worker nodes.

The following command installs GridEngine on the master node:

1 sudo apt-get install gridengine-master gridengine-client

We can use automatic configuration (as well as the default cell name), and
the “master” hostname should be set to the hostname of the chosen master node
(found by running the hostname command in this node).

On the client nodes, we run the following command:

1 sudo apt-get install gridengine-client gridengine-exec

We follow similar instructions as before. In our example, because we are work-
ing with a single node, we configure the same node as the master and client node.

To confirm success up to this point, we can run the qstat and qhost -q
commands. The first, which is used to check the status of the queues, should
return nothing (you have entered no jobs). The second should print two hosts,
a global host and your host (entered previously). If your host does not have
printed information, something has gone wrong. This is likely a DNS (domain
name server) error, as it indicates that a client cannot reach the master at the
given hostname. Here are some suggestions for what to do given issues at this
point:

1. Explicitly add your master hostname to the /etc/hosts file to ensure DNS
resolution. Note: you may need to also list the first name identifier of the
hostname [19], as seen in the example below:

1 127.0.0.1 localhost
2 <IP address> vcm-id.vm.university.edu vcm-id

23

2. Confirm that SGE ROOT is correctly defined by printing it in the com-
mand line and, if not, set it to /var/lib/gridengine

3. Print the hostname listed in /var/lib/gridengine/default/common/act qmaster
and confirm that it matches your master node hostname

4. Another good test is to use the binaries located in var/lib/gridengine/util-
bin/ arch/ – there are a number of programs there such as gethostbyname
and gethostbyaddr – these are used by SGE for DNS lookups

To make the rest of this process easier, we give the current user manager
permissions with the following command:

1 sudo qconf -am <your-user-id> #Add yourself as manager

Next, we add additional configurations to GridEngine. GridEngine has no
default queues, so we must create one from a default template. We add a new
queue and open a queue editor, making the alterations listed below:

1 Command: qconf -aq #Add queue command
2

3 Old version:
4 qname template
5 shell /bin/csh
6

7 New version:
8 qname all.q
9 shell /bin/bash

We also want to modify the free memory parameter in our configurations so
that we can submit and run jobs. We do this by entering the command below
(to open an editor) and altering the memory-related variables accordingly.

1 qconf -sc #Modify resource configurations
2

3 Original line:
4 mem free mf MEMORY ≤ YES NO 0 0
5

6 New lines:
7 mem free mf MEMORY ≤ YES YES 1G 0
8 gpu g INT ≤ YES YES 0 10000
9 ram free ram free MEMORY ≤ YES JOB 1G 0

Next, we must configure a parallel environment called smp to GridEngine, in
order to allow the reservation of CPU slots and the use of the smp parallelization
method in our queue. To do this, we enter the following editor commands and
make the subsequent changes:

1 Command: qconf -ap smp

24

2 Change:
3 pe name smp
4 slots 9999
5

6 Command: qconf -mq all.q
7 Change:
8 pe list make smp

Now that we’ve properly configured the settings in our GridEngine environ-
ment, we must add nodes (to create a network for job completion).

From here, we must set the proper roles for our nodes so that the network
functions properly. Note that setting our machine as an execution host spawns
an editor, in which we must make a small change to indicate the free RAM and
GPU parameters. These value should be informed by our memory considera-
tions (discussed prior):

1 qconf -ah <your-fqdn> #Add your machine as an admin host
2 qconf -as <your-fdqn> #Add your machine as a submit host
3 qconf -ae <your-fqdn> #Add your machine as an execution host
4 # --> Change: complex values ram free=112G,gpu=1

The final step to pull all of this together involves adding our machine to the
hostlist (so that the queue can be populated with jobs from the master):

1 Command: qconf -mq all.q #Add machine to hostlist

Note that this command will spawn an editor. In this editor, we must add our
host, as well as the number of slots allowed (based upon our available CPUs).
The file should look something like this:

1 qname all.q
2 hostlist <host>
3 ...
4 slots 30

At this point, the SGE system should be properly configured. However, dif-
ferent systems may require additional steps. If the VoxForge script fails on any
queue tasks, try any of the steps in the following section.

7.4.4 Debugging SGE

A useful note in debugging is as follows: The SGE platform only starts be-
ing used at the stage of MFCC extraction. To expedite debugging, you can
comment out the code before this point and run from there (assuming you’ve
successfully run the code prior). This should let you test the queue process in
an isolated fashion.

25

Another useful tool is qmon, which allows for graphical interaction with the
queues, jobs, host groups, etc. Launching this program allows you to check the
queues, monitor the status of jobs, etc.

The UPenn ACG SGE Cluster documentation offers some useful tips for
debugging as well [1].

There are also many useful tools in the SGE toolkit that we can use to
debug. The qstat command, for instance, can be used to monitor jobs:

1 qstat -u '*' #Print all current jobs
2 qstat -j job-id #Print info about specific job

If the job is listed as r, that means the job is running – it may just be taking
a long time. Meanwhile, qw means the job is waiting on the queue – this could
either be intentional, or it could mean the system is not properly configured.
The status E indicates that an error has occurred. Printing the status of this
job will provide more information.

The qhost command can also be useful to monitor the hosts and queues in
the GridEngine. An example output can be seen below:

1 # qhost -q
2 HOSTNAME ARCH NCPU LOAD MEMTOT MEMUSE SWAPTO SWAPUS
3 ---
4 global - - - - - - -
5 <host> lx26-amd64 2 1.16 1.9G 227.5M 2.0G 6.4M
6 all.q BIP 0/2/2

Should these fail, the Kaldi documentation on parallelization is incredibly useful.

7.5 VoxForge Output

Our VoxForge decoding results, summarized and abbreviated in Tables 7 and
8, vary greatly from those we saw in the Digits example. Firstly, we see up to
49.34 percent word error rate with monophone training – this is abysmal. The
high error rates for this example can be attributed to:

1. A large lexicon (increased state space of options translates to more room
for error)

2. Potentially erroneous training data (submitted by VoxForge users)

For this type of example to be useful, more data would be necessary – this
much data is fine for demonstration, but having around 20 percent error for
every word (not every sentence) makes this system difficult to use in practice.

26

Secondly, because the training/testing data we used actually had context
(rather than being single digits), the triphone training is much more successful,
coming in around 22.53 percent in the second pass.

This example clearly indicates the potential failures of Kaldi and open-source
datasets. When dealing with more complex queries, error skyrockets and the
need for data increases. This will need to be considered in development.

Table 7: Monophone Training Results
WER Percent Ratio

WER 7 50.36 2249 / 4466
WER 8 48.86 2182 / 4466
WER 9 47.56 2124 / 4466
WER 10 47.27 2111 / 4466
WER 11 47.29 2112 / 4466
WER 12 47.81 2135 / 4466
WER 13 49.08 2192 / 4466
WER 14 50.13 2239 / 4466
WER 15 50.60 2260 / 4466
WER 16 51.28 2290 / 4466
WER 17 52.55 2347 / 4466

Average 49.34 2203/4466

Table 8: Triphone Training Results

Table 9: Pass One
WER Percent Ratio

WER 7 27.14 1212 / 4466
WER 8 25.12 1122 / 4466
WER 9 23.67 1057 / 4466
WER 10 22.62 1010 / 4466
WER 11 22.53 1006 / 4466
WER 12 21.99 982 / 4466
WER 13 21.63 966 / 4466
WER 14 21.70 969 / 4466
WER 15 21.65 967 / 4466
WER 16 21.99 982 / 4466
WER 17 22.41 1001 / 4466

Average 22.95 1025 / 4466

Table 10: Pass Two
WER Percent Ratio

WER 7 26.87 1200 / 4466
WER 8 24.45 1092 / 4466
WER 9 22.84 1020 / 4466
WER 10 21.99 982 / 4466
WER 11 21.65 967 / 4466
WER 12 21.34 953 / 4466
WER 13 21.70 969 / 4466
WER 14 21.63 966 / 4466
WER 15 21.56 963 / 4466
WER 16 21.85 976 / 4466
WER 17 21.99 1020 / 4466

Average 22.53 1006 / 4466

27

8 CMU AN4 Example

8.1 Introduction

The CMU AN4 (the Alphanumeric database) is a series of census data recorded
at CMU in 1991 [2]. This data will be used to create a system capable of
recognizing alphanumeric queries. This example provides insight as to how
non-formatted audio and acoustic data can be funneled into Kaldi. We use a
hand-written script to retrieve the dataset from the CMU site, renaming and
sorting it into training and testing folders. This script also extracts the lexicon,
phones, transcriptions, etc. from the /etc files. This script can be found in the
appendix (note that it may require some modification for personal use).

8.2 CMU Results

The decoding results for this example, shown in Table 11, are not as promising
as initially projected given the relatively large size of the dataset and the small
lexicon (131 words). Even in the last pass of triphone decoding, we only get
down to a 6.27 percent word error rate. This isn’t stellar, considering we only
have around one hundred options per word in a sentence.

A potential improvement would be to revise the dataset to use the NATO
phonetic alphabet for letters. This system is specifically designed to distinguish
between similar letters (such as M[ike] and N[ovember]). Of course, this would
require collection of an entirely new dataset, which would require lots of time
and resources.

Another improvement may be to use an error-correcting system, like the one
demonstrated in the example below:

1 Service: Please read your serial number.
2 Client: C O P M N 6 8 D
3 Service: I'm sorry -- I got the first part [C O P]. After ...

that, did you say M as in Mike or N as in November?
4 Client: M as in Mike
5 Service: Ok. Your serial number is C O P M N 6 8 D, is this correct?
6 Client: Yes

28

Table 11: CMU AN4 Decoding Results

Table 12: Monophone Training
WER 0 5

WER 7 11.64 11.51
WER 8 11.64 11.51
WER 9 11.38 11.77
WER 10 11.64 11.77
WER 11 11.77 12.29
WER 12 12.29 12.68
WER 13 12.03 12.94
WER 14 12.68 13.71
WER 15 13.07 14.62
WER 16 14.10 15.14
WER 17 14.88 15.65

Average 12.46 11.88

Table 13: Triphone Pass 1
WER 0 5

WER 7 16.95 15.65
WER 8 15.27 13.97
WER 9 13.7 13.45
WER 10 13.32 12.55
WER 11 12.55 12.03
WER 12 12.03 11.64
WER 13 11.77 11.51
WER 14 11.51 11.64
WER 15 11.64 11.77
WER 16 11.77 11.64
WER 17 11.77 11.38

Average 12.93 12.48

Table 14: Triphone Pass 2
WER 0 5

WER 7 16.95 16.43
WER 8 16.04 14.88
WER 9 14.36 13.84
WER 10 13.84 13.58
WER 11 13.45 12.81
WER 12 12.81 12.81
WER 13 12.81 12.42
WER 14 12.68 12.29
WER 15 12.42 12.29
WER 16 12.16 12.03
WER 17 12.03 11.90

Average 12.43 13.21

Table 15: Triphone Pass 3
WER 0 5

WER 7 6.99 6.99
WER 8 6.60 6.47
WER 9 6.47 6.60
WER 10 6.60 6.47
WER 11 6.47 6.47
WER 12 6.47 6.47
WER 13 6.47 6.08
WER 14 6.08 6.08
WER 15 6.08 5.95
WER 16 6.08 5.69
WER 17 5.95 5.69

Average 6.39 6.27

29

9 How Does Kaldi Measure Up?

In Figure 6 below, we can see how the error rates from these Kaldi examples
(taken to be the best training system average word error rate) line up with cur-
rent error rates for on-the-market systems [15] [18]. It should be noted that the
comparison is not necessarily between completely similar systems – Google and
Cortana are on much larger scales, designed to recognize all possible input (as
opposed to our customized systems). Large companies spend billions on data
collection, system training, optimization, etc. They devote much more man
power and money to these systems than any one individual could. Hence, these
“comparisons” should be considered more as standard benchmarks, rather than
direct comparisons.

In Figure 7, we can see how the training dataset size must increase with the
lexicon size to maintain a reasonable word error rate for the system. This is
standard across most ASR systems.

As a final caveat, we must think beyond the word error rate. For instance, a
4.9 percent error rate for Google translates to a 4.9 percent chance of erroneous
transcription for every word in a sentence (not considering contextual changes).
This error will compound over the course of an entire sentence. Hence, an error
rate on the scale of 20 percent (seen in CMU AN4), where there is a 20 percent
chance of incorrect transcription with each word, virtually guarantees at least
one erroneous word transcription for a long sentence.

Figure 6: Word Error Rates in Kaldi examples compared to readily available
systems [15] [18]

30

Figure 7: Word Error Rates, lexicon size and dataset size across Kaldi Examples
(log scale)

31

10 Conclusion

Given the flexibility demonstrated by the Kaldi toolkit, it is safe to say that
further extensions and explorations will be possible. The ideal case will involve
the incorporation of a large, custom training dataset, which we have shown to
be possible. Another important extension will be real-time encoding – right
now, this system is geared towards static, already-recorded datasets. Our prod-
uct will require a dynamic system that can accommodate real-time decoding.
Such examples are clearly possible, as indicated by the Kaldi Online Decoding
Tutorial[17] and the Kaldi GStreamer (a real-time speech recognition server im-
plemented using Kaldi and readily available on Github)[7]. It should be noted
that a variety of elements were not considered in this analysis, including speed.
Future explorations must confirm that Kaldi real-time decoding is capable of
supplying speech-to-text results in under ten seconds (given our custom dataset).
Similarly, we identified several potential issues (e.g., a need for a huge dataset
to achieve low word error rates) that will need to be addressed. The informa-
tion we have seen so far, however, indicates that Kaldi is capable of providing
accurate and flexible solutions to the problem of speech recognition.

32

References

[1] ACG’s Sun Grid Engine (SGE) Cluster. University of Pennsylvania.

[2] CMU Census Database, 1991. Carnegie Mellon University.

[3] VoxForge: Open Source Acoustic Model and Audio Transcriptions, 2006-
2017. VoxForge.

[4] Sun Cluster Data Service for Sun Grid Engine Guide for Solaris OS, 2010.
Oracle.

[5] SRILM - The SRI Language Modeling Toolkit, 2011. SRI International.

[6] SoX - Sound eXchange, 2015. PmWiki.

[7] Tanel Alumäe. Kaldi GStreamer server, 2017.

[8] Madeline Briere. Speech Processing and Recognition, 2017.

[9] Berlin Chen. An Introduction to the Kaldi Speech Recognition Toolkit,
2014. National Taiwan Normal University.

[10] Eleanor Chodroff. Corpus Phonetics Tutorial: Kaldi, 2017. Northwestern
University.

[11] Gruhn et. al. Automatic Speech Recognition, 2011. Statistical Pronuncia-
tion Modeling for Non-Native Speech Processing.

[12] Mirko Hannemann. Weighted Finite State Transducers in Automatic
Speech Recognition, 2013. Computer Science Department at Brandeis.

[13] Zohar Jackson. Free Spoken Digit Dataset (FSDD), 2017.

[14] Duane Johnson. Understanding ARPA and Language Models, 2014.
WordTree.

[15] Sundar Pichai. Google’s I/O Developer Conference, 2017.

[16] Ondřej Plátek. Automatic speech recognition using Kaldi. Institute of
Formal and Applied Linguistics.

[17] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej
Glembek, Nagendra Goel, Mirko Hannemann, Petr Motlicek, Yanmin Qian,
Petr Schwarz, Jan Silovsky, Georg Stemmer, and Karel Vesely. The Kaldi
Speech Recognition Toolkit, 2011.

[18] George Saon. Recent Advances in Conversational Speech Recognition,
2016. IBM.

[19] Sam Skipsey. Reresolve hostname failed: can’t resolve hostname with SGE
6.1, 2008. University of Liverpool.

[20] Lyndon White. Kaldi-notes: Some notes on Kaldi. University of Western
Australia.

33

11 Appendix

11.1 Basic audio sorting script, sort.sh

1 # Run in free-spoken-digit-dataset directory
2

3 declare -a speakers=("jackson", "theo", "nicolas")
4

5 for i in {0..49}
6 do
7 for j in {0..9}
8 do
9 for k in "${speakers[@]}"

10 do
11 mkdir $k
12 folder="recordings"
13 utterance="${j} ${k} ${i}.wav"
14 newfile="{k} {j} ${i}.wav"
15 utterance="${folder}/${utterance}"
16 newfile="${folder}/${k}/${newfile}"
17 done
18 done
19 done

11.2 Acoustic Data Script, acoustic.sh

1 #!/bin/bash
2 DATA TEST="data/test"
3 DATA TRAIN="data/train"
4

5 # TODO: Don't hard code this
6 declare -a test=("jackson")
7 declare -a train=("theo" "nicolas")
8 declare -A map=([0]="zero" [1]="one" [2]="two" [3]="three" ...

[4]="four" [5]="five" [6]="six" [7]="seven" [8]="eight" ...
[9]="nine")

9 declare -a arr=("one" "two" "three" "four" "five" "six" "seven" ...
"eight" "nine" "zero")

10 user="mfb33"
11

12 # TODO: Check that in example
13 # Prompt for delete folder instead of exit
14

15 # Organization
16 if [-d "$DATA TEST"]; then
17 echo "Test folder already exists, please remove."
18 exit 1
19 else
20 mkdir data/test
21 fi
22

23 if [-d "$DATA TRAIN"]; then

34

24 echo "Train folder already exists, please remove."
25 exit 1
26 else
27 mkdir data/train
28 fi
29

30 # Enter data folder
31 cd data
32

33 # Creation of spk2gender files
34 touch test/spk2gender
35 touch train/spk2gender
36

37 #TODO: don't hard code
38

39 echo "jackson m" >> test/spk2gender
40 echo "nicolas m
41 theo m" >> train/spk2gender
42

43

44 # Creation of wav.scp
45 # <uterranceID> <full path to audio file>
46 touch test/wav.scp
47 touch train/wav.scp
48

49 for i in {0..49}
50 do
51 for j in {0..9}
52 do
53 for k in "${test[@]}"
54 do
55 folder="recordings"
56 end=".wav"
57 utterance="${k} ${j} ${i}"
58 path="/home/$user/kaldi/egs/digits/digits audio/test/"
59 file="$path${k}/$utterance$end"
60 echo "$utterance $file" >> test/wav.scp
61 done
62 for k in "${train[@]}"
63 do
64 folder="recordings"
65 end=".wav"
66 utterance="${k} ${j} ${i}"
67 path="/home/$user/kaldi/egs/digits/digits audio/train/"
68 file="$path${k}/$utterance$end"
69 echo "$utterance $file" >> train/wav.scp
70 done
71 done
72 done
73

74

75 # Generate text
76 # <uterranceID> <text transcription>
77 touch test/text
78 touch train/text
79

80

35

81

82 for i in {0..49}
83 do
84 for j in {0..9}
85 do
86 for k in "${train[@]}"
87 do
88 utterance="${k} ${j} ${i}"
89 echo "$utterance ${map[$j]}" >> train/text
90 done
91

92 for k in "${test[@]}"
93 do
94 utterance="${k} ${j} ${i}"
95 echo "$utterance ${map[$j]}" >> test/text
96 done
97 done
98 done
99

100 # Create utt2speak
101 # <uterranceID> <speakerID>
102 touch test/utt2spk
103 touch train/utt2spk
104

105 for i in {0..49}
106 do
107 for j in {0..9}
108 do
109 for k in "${test[@]}"
110 do
111 utterance="${k} ${j} ${i}"
112 echo -e "$utterance $k" >> test/utt2spk
113 done
114 for k in "${train[@]}"
115 do
116 utterance="${k} ${j} ${i}"
117 echo -e "$utterance $k" >> train/utt2spk
118 done
119 done
120 done
121

122 # Create corpus
123 # <text transcription>
124 touch local/corpus.txt
125

126 for i in "${arr[@]}"
127 do
128 echo $i >> local/corpus.txt
129 done
130

131 # Fix sorting
132 cd ..
133 ./utils/validate data dir.sh data/test
134 ./utils/fix data dir.sh data/test
135 ./utils/validate data dir.sh data/train
136 ./utils/fix data dir.sh data/train

36

11.3 Digits resample.m script

1 filename = '';
2 for name = {'jackson', 'theo', 'nicolas'}
3 for i = 0:9
4 for j=0:49
5 filename = ...

strcat('free-spoken-digit-dataset/recordings/', ...
name, '/', name, ' ', num2str(i), ' ', ...
num2str(j), '.wav');

6 file = char(filename);
7 [y,Fs] = audioread(file);
8 up = resample(y, 2, 1, pchip);
9 delete(file);

10 audiowrite(file, up, Fs*2);
11 end
12 end
13 end

11.4 Digits run.sh script

0 #!/bin/bash
1 . ./path.sh | | exit 1
2 . ./cmd.sh | | exit 1
3 nj=1 # number of parallel jobs - 1 is perfect for such a small ...

data set
4 lm order=1 # language model order (n-gram quantity) - 1 is ...

enough for digits grammar
5

6 # Safety mechanism (possible running this script with modified ...
arguments)

7 . utils/parse options.sh | | exit 1
8 [[$# -ge 1]] && { echo "Wrong arguments!"; exit 1; }
9

10 # Removing previously created data (from last run.sh execution)
11 rm -rf exp mfcc data/train/spk2utt data/train/cmvn.scp ...

data/train/feats.scp data/train/split1 data/test/spk2utt ...
data/test/cmvn.scp data/test/feats.scp data/test/split1 ...
data/local/lang data/lang data/local/tmp ...
data/local/dict/lexiconp.txt

12

13 echo
14 echo "===== PREPARING ACOUSTIC DATA ====="
15 echo
16

17 # Needs to be prepared by hand (or using self written scripts):
18 #
19 # spk2gender [<speaker-id> <gender>]
20 # wav.scp [<uterranceID> <full path to audio file>]
21 # text [<uterranceID> <text transcription>]
22 # utt2spk [<uterranceID> <speakerID>]
23 # corpus.txt [<text transcription>]

37

24

25 # Making spk2utt files
26 utils/utt2spk to spk2utt.pl data/train/utt2spk > data/train/spk2utt
27 utils/utt2spk to spk2utt.pl data/test/utt2spk > data/test/spk2utt
28

29 echo
30 echo "===== FEATURES EXTRACTION ====="
31 echo
32

33 # Making feats.scp files
34 mfccdir=mfcc
35 # Uncomment and modify arguments in scripts below if you have ...

any problems with data sorting
36 # utils/validate data dir.sh data/train # script for ...

checking prepared data - here: for data/train directory
37 # utils/fix data dir.sh data/train # tool for data ...

proper sorting if needed - here: for data/train directory
38 steps/make mfcc.sh --nj $nj --cmd "$train cmd" data/train ...

exp/make mfcc/train $mfccdir
39 steps/make mfcc.sh --nj $nj --cmd "$train cmd" data/test ...

exp/make mfcc/test $mfccdir
40

41 # Making cmvn.scp files
42 steps/compute cmvn stats.sh data/train exp/make mfcc/train $mfccdir
43 steps/compute cmvn stats.sh data/test exp/make mfcc/test $mfccdir
44

45 echo
46 echo "===== PREPARING LANGUAGE DATA ====="
47 echo
48

49 # Needs to be prepared by hand (or using self written scripts):
50 #
51 # lexicon.txt [<word> <phone 1> <phone 2> ...]
52 # nonsilence phones.txt [<phone>]
53 # silence phones.txt [<phone>]
54 # optional silence.txt [<phone>]
55

56 # Preparing language data
57 utils/prepare lang.sh data/local/dict "<UNK>" data/local/lang ...

data/lang
58

59 echo
60 echo "===== LANGUAGE MODEL CREATION ====="
61 echo "===== MAKING lm.arpa ====="
62 echo
63

64 loc=`which ngram-count`;
65 if [-z $loc]; then
66 if uname -a | grep 64 >/dev/null; then
67 sdir=$KALDI ROOT/tools/srilm/bin/i686-m64
68 else
69 sdir=$KALDI ROOT/tools/srilm/bin/i686
70 fi
71 if [-f $sdir/ngram-count]; then
72 echo "Using SRILM language modelling tool from $sdir"
73 export PATH=$PATH:$sdir
74 else

38

75 echo "SRILM toolkit is probably not installed.
76 Instructions: tools/install srilm.sh"
77 exit 1
78 fi
79 fi
80

81 local=data/local
82 mkdir $local/tmp
83 ngram-count -order $lm order -write-vocab ...

$local/tmp/vocab-full.txt -wbdiscount -text ...
$local/corpus.txt -lm $local/tmp/lm.arpa

84

85 echo
86 echo "===== MAKING G.fst ====="
87 echo
88

89 lang=data/lang
90 arpa2fst --disambig-symbol=#0 ...

--read-symbol-table=$lang/words.txt $local/tmp/lm.arpa ...
$lang/G.fst

91

92 echo
93 echo "===== MONO TRAINING ====="
94 echo
95

96 steps/train mono.sh --nj $nj --cmd "$train cmd" data/train ...
data/lang exp/mono | | exit 1

97

98 echo
99 echo "===== MONO DECODING ====="

100 echo
101

102 utils/mkgraph.sh --mono data/lang exp/mono exp/mono/graph | | ...
exit 1

103 steps/decode.sh --config conf/decode.config --nj $nj --cmd ...
"$decode cmd" exp/mono/graph data/test exp/mono/decode

104

105 echo
106 echo "===== MONO ALIGNMENT ====="
107 echo
108

109 steps/align si.sh --nj $nj --cmd "$train cmd" data/train ...
data/lang exp/mono exp/mono ali | | exit 1

110

111 echo
112 echo "===== TRI1 (first triphone pass) TRAINING ====="
113 echo
114

115 steps/train ∆s.sh --cmd "$train cmd" 2000 11000 data/train ...
data/lang exp/mono ali exp/tri1 | | exit 1

116

117 echo
118 echo "===== TRI1 (first triphone pass) DECODING ====="
119 echo
120

121 utils/mkgraph.sh data/lang exp/tri1 exp/tri1/graph | | exit 1

39

122 steps/decode.sh --config conf/decode.config --nj $nj --cmd ...
"$decode cmd" exp/tri1/graph data/test exp/tri1/decode

123

124 echo
125 echo "===== run.sh script is finished ====="
126 echo

11.5 Digits run.sh Output

0 ===== PREPARING ACOUSTIC DATA =====
1

2

3 ===== FEATURES EXTRACTION =====
4

5 steps/make mfcc.sh --nj 1 --cmd run.pl data/train ...
exp/make mfcc/train mfcc

6 utils/validate data dir.sh: Successfully validated ...
data-directory data/train

7 steps/make mfcc.sh: [info]: no segments file exists: assuming ...
wav.scp indexed by utterance.

8 Succeeded creating MFCC features for train
9 steps/make mfcc.sh --nj 1 --cmd run.pl data/test ...

exp/make mfcc/test mfcc
10 utils/validate data dir.sh: WARNING: you have only one speaker. ...

This probably a bad idea.
11 Search for the word 'bold' in ...

http://kaldi-asr.org/doc/data prep.html
12 for more information.
13 utils/validate data dir.sh: Successfully validated ...

data-directory data/test
14 steps/make mfcc.sh: [info]: no segments file exists: assuming ...

wav.scp indexed by utterance.
15 Succeeded creating MFCC features for test
16 steps/compute cmvn stats.sh data/train exp/make mfcc/train mfcc
17 Succeeded creating CMVN stats for train
18 steps/compute cmvn stats.sh data/test exp/make mfcc/test mfcc
19 Succeeded creating CMVN stats for test
20

21 ===== PREPARING LANGUAGE DATA =====
22

23 utils/prepare lang.sh data/local/dict <UNK> data/local/lang ...
data/lang

24 Checking data/local/dict/silence phones.txt ...
25 --> reading data/local/dict/silence phones.txt
26 --> data/local/dict/silence phones.txt is OK
27

28 Checking data/local/dict/optional silence.txt ...
29 --> reading data/local/dict/optional silence.txt
30 --> data/local/dict/optional silence.txt is OK
31

32 Checking data/local/dict/nonsilence phones.txt ...
33 --> reading data/local/dict/nonsilence phones.txt
34 --> data/local/dict/nonsilence phones.txt is OK
35

40

36 Checking disjoint: silence phones.txt, nonsilence phones.txt
37 --> disjoint property is OK.
38

39 Checking data/local/dict/lexicon.txt
40 --> reading data/local/dict/lexicon.txt
41 --> data/local/dict/lexicon.txt is OK
42

43 Checking data/local/dict/extra questions.txt ...
44 --> data/local/dict/extra questions.txt is empty (this is OK)
45 --> SUCCESS [validating dictionary directory data/local/dict]
46

47 **Creating data/local/dict/lexiconp.txt from ...
data/local/dict/lexicon.txt

48 fstaddselfloops data/lang/phones/wdisambig phones.int ...
data/lang/phones/wdisambig words.int

49 prepare lang.sh: validating output directory
50 utils/validate lang.pl data/lang
51 Checking data/lang/phones.txt ...
52 --> data/lang/phones.txt is OK
53

54 Checking words.txt: #0 ...
55 --> data/lang/words.txt is OK
56

57 Checking disjoint: silence.txt, nonsilence.txt, disambig.txt ...
58 --> silence.txt and nonsilence.txt are disjoint
59 --> silence.txt and disambig.txt are disjoint
60 --> disambig.txt and nonsilence.txt are disjoint
61 --> disjoint property is OK
62

63 Checking sumation: silence.txt, nonsilence.txt, disambig.txt ...
64 --> summation property is OK
65

66 Checking data/lang/phones/context indep.{txt, int, csl} ...
67 --> 10 entry/entries in data/lang/phones/context indep.txt
68 --> data/lang/phones/context indep.int corresponds to ...

data/lang/phones/context indep.txt
69 --> data/lang/phones/context indep.csl corresponds to ...

data/lang/phones/context indep.txt
70 --> data/lang/phones/context indep.{txt, int, csl} are OK
71

72 Checking data/lang/phones/nonsilence.{txt, int, csl} ...
73 --> 80 entry/entries in data/lang/phones/nonsilence.txt
74 --> data/lang/phones/nonsilence.int corresponds to ...

data/lang/phones/nonsilence.txt
75 --> data/lang/phones/nonsilence.csl corresponds to ...

data/lang/phones/nonsilence.txt
76 --> data/lang/phones/nonsilence.{txt, int, csl} are OK
77

78 Checking data/lang/phones/silence.{txt, int, csl} ...
79 --> 10 entry/entries in data/lang/phones/silence.txt
80 --> data/lang/phones/silence.int corresponds to ...

data/lang/phones/silence.txt
81 --> data/lang/phones/silence.csl corresponds to ...

data/lang/phones/silence.txt
82 --> data/lang/phones/silence.{txt, int, csl} are OK
83

84 Checking data/lang/phones/optional silence.{txt, int, csl} ...

41

85 --> 1 entry/entries in data/lang/phones/optional silence.txt
86 --> data/lang/phones/optional silence.int corresponds to ...

data/lang/phones/optional silence.txt
87 --> data/lang/phones/optional silence.csl corresponds to ...

data/lang/phones/optional silence.txt
88 --> data/lang/phones/optional silence.{txt, int, csl} are OK
89

90 Checking data/lang/phones/disambig.{txt, int, csl} ...
91 --> 2 entry/entries in data/lang/phones/disambig.txt
92 --> data/lang/phones/disambig.int corresponds to ...

data/lang/phones/disambig.txt
93 --> data/lang/phones/disambig.csl corresponds to ...

data/lang/phones/disambig.txt
94 --> data/lang/phones/disambig.{txt, int, csl} are OK
95

96 Checking data/lang/phones/roots.{txt, int} ...
97 --> 22 entry/entries in data/lang/phones/roots.txt
98 --> data/lang/phones/roots.int corresponds to ...

data/lang/phones/roots.txt
99 --> data/lang/phones/roots.{txt, int} are OK

100

101 Checking data/lang/phones/sets.{txt, int} ...
102 --> 22 entry/entries in data/lang/phones/sets.txt
103 --> data/lang/phones/sets.int corresponds to ...

data/lang/phones/sets.txt
104 --> data/lang/phones/sets.{txt, int} are OK
105

106 Checking data/lang/phones/extra questions.{txt, int} ...
107 --> 9 entry/entries in data/lang/phones/extra questions.txt
108 --> data/lang/phones/extra questions.int corresponds to ...

data/lang/phones/extra questions.txt
109 --> data/lang/phones/extra questions.{txt, int} are OK
110

111 Checking data/lang/phones/word boundary.{txt, int} ...
112 --> 90 entry/entries in data/lang/phones/word boundary.txt
113 --> data/lang/phones/word boundary.int corresponds to ...

data/lang/phones/word boundary.txt
114 --> data/lang/phones/word boundary.{txt, int} are OK
115

116 Checking optional silence.txt ...
117 --> reading data/lang/phones/optional silence.txt
118 --> data/lang/phones/optional silence.txt is OK
119

120 Checking disambiguation symbols: #0 and #1
121 --> data/lang/phones/disambig.txt has "#0" and "#1"
122 --> data/lang/phones/disambig.txt is OK
123

124 Checking topo ...
125

126 Checking word boundary.txt: silence.txt, nonsilence.txt, ...
disambig.txt ...

127 --> data/lang/phones/word boundary.txt doesn't include ...
disambiguation symbols

128 --> data/lang/phones/word boundary.txt is the union of ...
nonsilence.txt and silence.txt

129 --> data/lang/phones/word boundary.txt is OK
130

42

131 Checking word-level disambiguation symbols...
132 --> data/lang/phones/wdisambig.txt exists (newer prepare lang.sh)
133 Checking word boundary.int and disambig.int
134 --> generating a 81 word sequence
135 --> resulting phone sequence from L.fst corresponds to the word ...

sequence
136 --> L.fst is OK
137 --> generating a 79 word sequence
138 --> resulting phone sequence from L disambig.fst corresponds to ...

the word sequence
139 --> L disambig.fst is OK
140

141 Checking data/lang/oov.{txt, int} ...
142 --> 1 entry/entries in data/lang/oov.txt
143 --> data/lang/oov.int corresponds to data/lang/oov.txt
144 --> data/lang/oov.{txt, int} are OK
145

146 --> data/lang/L.fst is olabel sorted
147 --> data/lang/L disambig.fst is olabel sorted
148 --> SUCCESS [validating lang directory data/lang]
149

150 ===== LANGUAGE MODEL CREATION =====
151 ===== MAKING lm.arpa =====
152

153 Using SRILM language modelling tool from ...
/home/mfb33/kaldi/egs/digits/../../tools/srilm/bin/i686-m64

154

155 ===== MAKING G.fst =====
156

157 arpa2fst --disambig-symbol=#0 ...
--read-symbol-table=data/lang/words.txt ...
data/local/tmp/lm.arpa data/lang/G.fst

158 LOG (arpa2fst[5.2.134¬1-ecd4]:Read():arpa-file-parser.cc:98) ...
Reading \data\ section.

159 LOG (arpa2fst[5.2.134¬1-ecd4]:Read():arpa-file-parser.cc:153) ...
Reading \1-grams: section.

160 LOG (arpa2fst[5.2.134¬1-ecd4]: RemoveRedundantStates(): ...
arpa-lm-compiler.cc:359) Reduced num-states from 1 to 1

161

162 ===== MONO TRAINING =====
163

164 steps/train mono.sh --nj 1 --cmd run.pl data/train data/lang ...
exp/mono

165 steps/train mono.sh: Initializing monophone system.
166 steps/train mono.sh: Compiling training graphs
167 steps/train mono.sh: Aligning data equally (pass 0)
168 steps/train mono.sh: Pass 1
169 steps/train mono.sh: Aligning data
170 steps/train mono.sh: Pass 2
171 steps/train mono.sh: Aligning data
172 steps/train mono.sh: Pass 3
173 ...
174 steps/train mono.sh: Pass 38
175 steps/train mono.sh: Aligning data
176 steps/train mono.sh: Pass 39
177 steps/diagnostic/analyze alignments.sh --cmd run.pl data/lang ...

exp/mono

43

178 analyze phone length stats.py: WARNING: optional-silence sil is ...
seen only 12.8% of the time at utterance begin. This may ...
not be optimal.

179 analyze phone length stats.py: WARNING: optional-silence sil is ...
seen only 5.3% of the time at utterance end. This may not ...
be optimal.

180 steps/diagnostic/analyze alignments.sh: see stats in ...
exp/mono/log/analyze alignments.log

181 61 warnings in exp/mono/log/align.*.*.log
182 2 warnings in exp/mono/log/analyze alignments.log
183 228 warnings in exp/mono/log/update.*.log
184 exp/mono: nj=1 align prob=-76.67 over 0.10h [retry=0.0%, ...

fail=0.0%] states=70 gauss=1003
185 steps/train mono.sh: Done training monophone system in exp/mono
186

187 ===== MONO DECODING =====
188

189 WARNING: the --mono, --left-biphone and --quinphone options are ...
now deprecated and ignored.

190 tree-info exp/mono/tree
191 tree-info exp/mono/tree
192 fsttablecompose data/lang/L disambig.fst data/lang/G.fst
193 fstminimizeencoded
194 fstpushspecial
195 fstdeterminizestar --use-log=true
196 fstisstochastic data/lang/tmp/LG.fst
197 -0.0338077 -0.0345085
198 [info]: LG not stochastic.
199 fstcomposecontext --context-size=1 --central-position=0 ...

--read-disambig-syms=data/lang/phones/disambig.int ...
--write-disambig-syms=data/lang/tmp/disambig ilabels 1 0.int ...
data/lang/tmp/ilabels 1 0.56333

200 fstisstochastic data/lang/tmp/CLG 1 0.fst
201 -0.0338077 -0.0345085
202 [info]: CLG not stochastic.
203 make-h-transducer ...

--disambig-syms-out=exp/mono/graph/disambig tid.int ...
--transition-scale=1.0 data/lang/tmp/ilabels 1 0 ...
exp/mono/tree exp/mono/final.mdl

204 fstrmepslocal
205 fstminimizeencoded
206 fstdeterminizestar --use-log=true
207 fstrmsymbols exp/mono/graph/disambig tid.int
208 fsttablecompose exp/mono/graph/Ha.fst data/lang/tmp/CLG 1 0.fst
209 fstisstochastic exp/mono/graph/HCLGa.fst
210 0.000331514 -0.0349441
211 HCLGa is not stochastic
212 add-self-loops --self-loop-scale=0.1 --reorder=true ...

exp/mono/final.mdl
213 steps/decode.sh --config conf/decode.config --nj 1 --cmd run.pl ...

exp/mono/graph data/test exp/mono/decode
214 decode.sh: feature type is ∆

215 steps/diagnostic/analyze lats.sh --cmd run.pl exp/mono/graph ...
exp/mono/decode

216 analyze phone length stats.py: WARNING: optional-silence sil is ...
seen only 51.0% of the time at utterance begin. This may ...
not be optimal.

44

217 analyze phone length stats.py: WARNING: optional-silence sil is ...
seen only 34.6% of the time at utterance end. This may not ...
be optimal.

218 steps/diagnostic/analyze lats.sh: see stats in ...
exp/mono/decode/log/analyze alignments.log

219 Overall, lattice depth (10,50,90-percentile)=(1,1,3) and mean=1.4
220 steps/diagnostic/analyze lats.sh: see stats in ...

exp/mono/decode/log/analyze lattice depth stats.log
221 exp/mono/decode/wer 10
222 %WER 7.60 [38 / 500, 0 ins, 20 del, 18 sub]
223 %SER 7.60 [38 / 500]
224 exp/mono/decode/wer 11
225 %WER 8.00 [40 / 500, 0 ins, 21 del, 19 sub]
226 %SER 8.00 [40 / 500]
227 exp/mono/decode/wer 12
228 %WER 8.40 [42 / 500, 0 ins, 23 del, 19 sub]
229 %SER 8.40 [42 / 500]
230 exp/mono/decode/wer 13
231 %WER 8.40 [42 / 500, 0 ins, 23 del, 19 sub]
232 %SER 8.40 [42 / 500]
233 exp/mono/decode/wer 14
234 %WER 9.20 [46 / 500, 0 ins, 27 del, 19 sub]
235 %SER 9.20 [46 / 500]
236 exp/mono/decode/wer 15
237 %WER 9.80 [49 / 500, 0 ins, 30 del, 19 sub]
238 %SER 9.80 [49 / 500]
239 exp/mono/decode/wer 16
240 %WER 10.20 [51 / 500, 0 ins, 32 del, 19 sub]
241 %SER 10.20 [51 / 500]
242 exp/mono/decode/wer 17
243 %WER 10.80 [54 / 500, 0 ins, 35 del, 19 sub]
244 %SER 10.80 [54 / 500]
245 exp/mono/decode/wer 7
246 %WER 7.40 [37 / 500, 0 ins, 18 del, 19 sub]
247 %SER 7.40 [37 / 500]
248 exp/mono/decode/wer 8
249 %WER 7.40 [37 / 500, 0 ins, 19 del, 18 sub]
250 %SER 7.40 [37 / 500]
251 exp/mono/decode/wer 9
252 %WER 7.20 [36 / 500, 0 ins, 19 del, 17 sub]
253 %SER 7.20 [36 / 500]
254

255 ===== MONO ALIGNMENT =====
256

257 steps/align si.sh --nj 1 --cmd run.pl data/train data/lang ...
exp/mono exp/mono ali

258 steps/align si.sh: feature type is ∆

259 steps/align si.sh: aligning data in data/train using model from ...
exp/mono, putting alignments in exp/mono ali

260 steps/diagnostic/analyze alignments.sh --cmd run.pl data/lang ...
exp/mono ali

261 analyze phone length stats.py: WARNING: optional-silence sil is ...
seen only 12.8% of the time at utterance begin. This may ...
not be optimal.

262 analyze phone length stats.py: WARNING: optional-silence sil is ...
seen only 5.3% of the time at utterance end. This may not ...
be optimal.

45

263 steps/diagnostic/analyze alignments.sh: see stats in ...
exp/mono ali/log/analyze alignments.log

264 steps/align si.sh: done aligning data.
265

266 ===== TRI1 (first triphone pass) TRAINING =====
267

268 steps/train ∆s.sh --cmd run.pl 2000 11000 data/train data/lang ...
exp/mono ali exp/tri1

269 steps/train ∆s.sh: accumulating tree stats
270 steps/train ∆s.sh: getting questions for tree-building, via ...

clustering
271 steps/train ∆s.sh: building the tree
272 WARNING ...

(gmm-init-model[5.2.134¬1-ecd4]:InitAmGmm():gmm-init-model.cc:55) ...
Tree has pdf-id 1 with no stats; corresponding phone list: 6 ...
7 8 9 10

273 ** The warnings above about 'no stats' generally mean you have ...
phones **

274 ** (or groups of phones) in your phone set that had no ...
corresponding data. **

275 ** You should probably figure out whether something went wrong, **
276 ** or whether your data just doesn't happen to have examples of ...

those **
277 ** phones. **
278 steps/train ∆s.sh: converting alignments from exp/mono ali to ...

use current tree
279 steps/train ∆s.sh: compiling graphs of transcripts
280 steps/train ∆s.sh: training pass 1
281 steps/train ∆s.sh: training pass 2
282 steps/train ∆s.sh: training pass 3
283
284 steps/train ∆s.sh: training pass 32
285 steps/train ∆s.sh: training pass 33
286 steps/train ∆s.sh: training pass 34
287 steps/diagnostic/analyze alignments.sh --cmd run.pl data/lang ...

exp/tri1
288 analyze phone length stats.py: WARNING: optional-silence sil is ...

seen only 12.7% of the time at utterance begin. This may ...
not be optimal.

289 analyze phone length stats.py: WARNING: optional-silence sil is ...
seen only 5.4% of the time at utterance end. This may not ...
be optimal.

290 steps/diagnostic/analyze alignments.sh: see stats in ...
exp/tri1/log/analyze alignments.log

291 12 warnings in exp/tri1/log/init model.log
292 7 warnings in exp/tri1/log/align.*.*.log
293 1 warnings in exp/tri1/log/questions.log
294 1 warnings in exp/tri1/log/mixup.log
295 1 warnings in exp/tri1/log/build tree.log
296 832 warnings in exp/tri1/log/update.*.log
297 2 warnings in exp/tri1/log/analyze alignments.log
298 exp/tri1: nj=1 align prob=-73.94 over 0.10h [retry=0.1%, ...

fail=0.0%] states=105 gauss=1703 tree-impr=6.52
299 steps/train ∆s.sh: Done training system with ∆+∆-∆ features in ...

exp/tri1
300

301 ===== TRI1 (first triphone pass) DECODING =====

46

302

303 tree-info exp/tri1/tree
304 tree-info exp/tri1/tree
305 fstcomposecontext --context-size=3 --central-position=1 ...

--read-disambig-syms=data/lang/phones/disambig.int ...
--write-disambig-syms=data/lang/tmp/disambig ilabels 3 1.int ...
data/lang/tmp/ilabels 3 1.58581

306 fstisstochastic data/lang/tmp/CLG 3 1.fst
307 0 -0.0345085
308 [info]: CLG not stochastic.
309 make-h-transducer ...

--disambig-syms-out=exp/tri1/graph/disambig tid.int ...
--transition-scale=1.0 data/lang/tmp/ilabels 3 1 ...
exp/tri1/tree exp/tri1/final.mdl

310 fstminimizeencoded
311 fstdeterminizestar --use-log=true
312 fstrmepslocal
313 fsttablecompose exp/tri1/graph/Ha.fst data/lang/tmp/CLG 3 1.fst
314 fstrmsymbols exp/tri1/graph/disambig tid.int
315 fstisstochastic exp/tri1/graph/HCLGa.fst
316 0.000331514 -0.0788057
317 HCLGa is not stochastic
318 add-self-loops --self-loop-scale=0.1 --reorder=true ...

exp/tri1/final.mdl
319 steps/decode.sh --config conf/decode.config --nj 1 --cmd run.pl ...

exp/tri1/graph data/test exp/tri1/decode
320 decode.sh: feature type is ∆

321 steps/diagnostic/analyze lats.sh --cmd run.pl exp/tri1/graph ...
exp/tri1/decode

322 analyze phone length stats.py: WARNING: optional-silence sil is ...
seen only 52.6% of the time at utterance begin. This may ...
not be optimal.

323 analyze phone length stats.py: WARNING: optional-silence sil is ...
seen only 40.2% of the time at utterance end. This may not ...
be optimal.

324 steps/diagnostic/analyze lats.sh: see stats in ...
exp/tri1/decode/log/analyze alignments.log

325 Overall, lattice depth (10,50,90-percentile)=(1,1,2) and mean=1.3
326 steps/diagnostic/analyze lats.sh: see stats in ...

exp/tri1/decode/log/analyze lattice depth stats.log
327 exp/tri1/decode/wer 10
328 %WER 9.40 [47 / 500, 13 ins, 7 del, 27 sub]
329 %SER 9.40 [47 / 500]
330 exp/tri1/decode/wer 11
331 %WER 9.60 [48 / 500, 13 ins, 8 del, 27 sub]
332 %SER 9.60 [48 / 500]
333 exp/tri1/decode/wer 12
334 %WER 9.40 [47 / 500, 13 ins, 8 del, 26 sub]
335 %SER 9.40 [47 / 500]
336 exp/tri1/decode/wer 13
337 %WER 9.00 [45 / 500, 11 ins, 9 del, 25 sub]
338 %SER 9.00 [45 / 500]
339 exp/tri1/decode/wer 14
340 %WER 9.40 [47 / 500, 10 ins, 11 del, 26 sub]
341 %SER 9.40 [47 / 500]
342 exp/tri1/decode/wer 15
343 %WER 8.80 [44 / 500, 8 ins, 11 del, 25 sub]

47

344 %SER 8.80 [44 / 500]
345 exp/tri1/decode/wer 16
346 %WER 8.40 [42 / 500, 5 ins, 12 del, 25 sub]
347 %SER 8.40 [42 / 500]
348 exp/tri1/decode/wer 17
349 %WER 8.40 [42 / 500, 3 ins, 12 del, 27 sub]
350 %SER 8.40 [42 / 500]
351 exp/tri1/decode/wer 7
352 %WER 9.60 [48 / 500, 15 ins, 5 del, 28 sub]
353 %SER 9.40 [47 / 500]
354 exp/tri1/decode/wer 8
355 %WER 9.40 [47 / 500, 14 ins, 6 del, 27 sub]
356 %SER 9.40 [47 / 500]
357 exp/tri1/decode/wer 9
358 %WER 9.40 [47 / 500, 14 ins, 7 del, 26 sub]
359 %SER 9.40 [47 / 500]
360

361 ===== run.sh script is finished =====

11.6 CMU AN4 Data Preparation Script, prep.sh

0 # Build organization
1 ## TODO: Remove only if present
2 echo
3 echo "---DOWNLOADING CMU ALPHANUMERIC DATA---"
4 echo
5

6 ALPHA ROOT="/home/mfb33/kaldi/egs/alpha/"
7 cd ¬/kaldi/egs/
8 mkdir alpha
9 cd alpha

10 mkdir alpha audio
11 mkdir alpha audio/test
12 mkdir alpha audio/train
13 wget ...

http://www.speech.cs.cmu.edu/databases/an4/an4 raw.bigendian.tar.gz
14 tar -xvzf an4 raw.bigendian.tar.gz
15 rm an4 raw.bigendian.tar.gz
16

17 # Create audio data
18 mv an4/wav/an4 clstk/* alpha audio/train
19 mv an4/wav/an4test clstk/* alpha audio/test
20

21 # Convert from RAW to WAV
22 # 16kHZ sampled, 16 bit
23 # sox -r 16000 -e unsigned -b 16 -c 1 <RAW FILE> <TARGET FILE>
24 # find alpha audio/ -maxdepth 3 -type f
25 for d in $(find alpha audio/ -maxdepth 3 -type f)
26 do
27 raw="${d}"
28 target="${d%%.*}"
29 name="${target##*/}" #Everything after
30 content="$(cut -d'-' -f1 <<<"${name}")"
31 speaker="$(cut -d'-' -f2 <<<"${name}")"

48

32 suffix="$(cut -d'-' -f3 <<<"${name}")"
33 name="${speaker}-${content}-${suffix}"
34 path="${target%/*}" #Everything before /
35 target="${path}/$name"
36 target="${target}.wav"
37 sox -r 16000 -e unsigned -b 16 -c 1 $raw $target
38 rm $raw
39 done
40

41 echo
42 echo "---GENERATING ACOUSTIC DATA---"
43 echo
44

45 mkdir data
46 mkdir data/train
47 mkdir data/test
48 mkdir data/local
49 mkdir data/local/dict
50

51

52 # spk2gender
53 # TODO: Gender data? (don't really want that)
54 # <speakerID> <gender>
55

56 # wav.scp
57 # <uterranceID> <full path to audio file>
58 rm data/train/wav.scp
59 touch data/train/wav.scp
60 for d in $(find alpha audio/train -maxdepth 2 -type f)
61 do
62 path=$ALPHA ROOT$d
63 name="${d%%.*}"
64 name="${name##*/}"
65 echo -e "$name $path" >> data/train/wav.scp
66 done
67

68 rm data/test/wav.scp
69 touch data/test/wav.scp
70 for d in $(find alpha audio/test -maxdepth 2 -type f)
71 do
72 path=$ALPHA ROOT$d
73 name="${d%%.*}"
74 name="${name##*/}"
75 echo -e "$name $path" >> data/test/wav.scp
76 done
77

78 # TEXT
79 # an4 test.transcription
80 # an4 train.transcription
81 rm data/train/text
82 touch data/train/text
83 input="an4/etc/an4 train.transcription"
84 while IFS= read -r line
85 do
86 trans="${line%%</s>*}"
87 trans="${trans##*<s>}"
88 name="${line%%)*}"

49

89 name="${name##*(}"
90 content="$(cut -d'-' -f1 <<<"${name}")"
91 speaker="$(cut -d'-' -f2 <<<"${name}")"
92 suffix="$(cut -d'-' -f3 <<<"${name}")"
93 name="${speaker}-${content}-${suffix}"
94 echo -e "$name $trans" >> data/train/text
95 done < "$input"
96

97 rm data/test/text
98 touch data/test/text
99 input="an4/etc/an4 test.transcription"

100 while IFS= read -r line
101 do
102 trans="${line%%(*}"
103 name="${line%%)*}"
104 name="${name##*(}"
105 content="$(cut -d'-' -f1 <<<"${name}")"
106 speaker="$(cut -d'-' -f2 <<<"${name}")"
107 suffix="$(cut -d'-' -f3 <<<"${name}")"
108 name="${speaker}-${content}-${suffix}"
109 echo -e "$name $trans" >> data/test/text
110 done < "$input"
111

112 ### utt2spk
113 # <uterranceID> <speakerID>
114 rm data/train/utt2spk
115 touch data/train/utt2spk
116 for d in $(find alpha audio/train -maxdepth 1 -type d)
117 do
118 for e in $(find $d -maxdepth 1 -type f)
119 do
120 folder="${d##*/}"
121 name="${e##*/}"
122 name="${name%%.*}"
123 echo "$name $folder" >> data/train/utt2spk
124 done
125 done
126

127 rm data/test/utt2spk
128 touch data/test/utt2spk
129 for d in $(find alpha audio/test -maxdepth 1 -type d)
130 do
131 for e in $(find $d -maxdepth 1 -type f)
132 do
133 folder="${d##*/}"
134 name="${e##*/}"
135 name="${name%%.*}"
136 echo "$name $folder" >> data/test/utt2spk
137 done
138 done
139

140 ### corpus.txt
141 ## TODO: Generate more comprehensive corpus
142 # For now, just copy in
143 rm data/local/corpus.txt
144 touch data/local/corpus.txt
145

50

146 input="an4/etc/an4 train.transcription"
147 while IFS= read -r line
148 do
149 trans="${line%%</s>*}"
150 trans="${trans##*<s>}"
151 echo -e "$trans" >> data/local/corpus.txt
152 done < "$input"
153

154 input="an4/etc/an4 test.transcription"
155 while IFS= read -r line
156 do
157 trans="${line%%(*}"
158 echo -e "$trans" >> data/local/corpus.txt
159 done < "$input"
160

161

162 echo
163 echo "---GENERATING LANGUAGE DATA---"
164 echo
165

166 ## Lexicon <word> <phone 1> <phone 2> ...
167 rm data/local/dict/lexicon.txt
168 touch data/local/dict/lexicon.txt
169 ## PROBLEM WITH FORMAT:
170 # TWENTIETH T W EH N IY AH TH
171 # TWENTIETH(2) T W EH N IY IH TH
172 # TWENTIETH(3) T W EH N T IY AH TH
173 # TWENTIETH(4)
174 # Can't have duplicates
175 dict=`cat an4/etc/an4.dic`
176 echo "$dict" | sed 's/([ˆ()]*)//g' >> data/local/dict/lexicon.txt
177 echo '<UNK> SIL' >> data/local/dict/lexicon.txt
178

179 ## Nonsilence phones.txt
180 # <phone>
181 rm data/local/dict/nonsilence phones.txt
182 touch data/local/dict/nonsilence phones.txt
183 cat an4/etc/an4.phone | grep -v 'SIL' > ...

data/local/dict/nonsilence phones.txt
184

185 ## Silence phones.txt
186 rm data/local/dict/silence phones.txt
187 touch data/local/dict/silence phones.txt
188 echo 'SIL' > data/local/dict/silence phones.txt
189

190 ## TODO: OPTIONAL SILENCE?
191 rm data/local/dict/optional silence.txt
192 touch data/local/dict/optional silence.txt
193 echo 'SIL' > data/local/dict/optional silence.txt
194

195 ## Copy toolkits from wsj
196 mkdir utils
197 cp -r ../wsj/s5/utils/* ./utils
198 mkdir steps
199 cp -r ../wsj/s5/steps/* ./steps
200

201 ## Copy scoring script from voxforge

51

202 mkdir local
203 cp -r ../voxforge/s5/local/score.sh local/score.sh
204

205 ## Install SRILM (used for this example)
206 #cd ../..
207 #cd tools
208 #./install srilm.sh
209 #cd ..
210 #cd egs/alpha
211

212 # Configuration
213 mkdir conf
214 touch conf/decode.config
215 echo "first beam=10.0
216 beam=13.0
217 lattice beam=6.0" >> conf/decode.config
218 touch conf/mfcc.conf
219 echo "--use-energy=false" >> conf/mfcc.conf
220

221 ## TODO: Choose proper training methods
222 cp ../digits/cmd.sh ./cmd.sh
223 cp ../digits/run.sh ./run.sh
224 cp ../digits/path.sh ./path.sh
225

226 # Fix ordering
227 ./utils/fix data dir.sh data/test
228 ./utils/fix data dir.sh data/train
229 # echo "--no-spk-sort means that the script does not require ...

the utt2spk to be "
230 # echo "sorted by the speaker-id in addition to being sorted ...

by utterance-id."
231 # echo "By default, utt2spk is expected to be sorted by both, ...

which can be "
232 # echo "achieved by making the speaker-id prefixes of the ...

utterance-ids
233

234

235 ## ****** See new run script
236 # Move language model into the tmp folder

52

	Abstract
	Project Goals
	Background
	What is Automatic Speech Recognition?
	What is Kaldi?

	Kaldi: Automatic Speech Recognition Toolkit
	Kaldi Layout
	Decoding Graph
	Acoustic GMMs

	Decoding
	Reader Caveat
	Organization
	Installation
	Data Preparation

	Initial Assessment of Kaldi
	Digits Example
	Introduction
	Resources
	Preparing Audio Data
	Language Data
	SRI Language Model (SRILM)
	A Note on Sampling Rates
	The "Run" Script
	Interpreting Script Results
	Decoding Logs
	Word Error Rates

	VoxForge Example
	Introduction
	What is VoxForge?
	VoxForge Dataset

	Dependencies
	(Optional) Memory Considerations
	Parallelization with Sun GridEngine
	Why do I need to do this?
	Assessing Machine Capabilities
	Installation
	Debugging SGE

	VoxForge Output

	CMU AN4 Example
	Introduction
	CMU Results

	How Does Kaldi Measure Up?
	Conclusion
	Appendix
	Basic audio sorting script, sort.sh
	Acoustic Data Script, acoustic.sh
	Digits resample.m script
	Digits run.sh script
	Digits run.sh Output
	CMU AN4 Data Preparation Script, prep.sh

