
Goals

Automatic Speech Recognition Using the Kaldi Toolkit
Madeline F. Briere & Michael R. Gustafson, Ph.D.

Results

References

Abstract Kaldi Toolkit Layout Discussion

Acknowledgements
Intellectual property of Marvin AI Systems LLC

Completed as Independent Study for Duke University

This project explores the current technology
available for Automatic Speech Recognition
(ASR), the process of converting speech from a
recorded audio signal to text.1 Our goal is to
identify a toolkit for use in the construction of a
personal assistant system, similar to current on-
the-market assistants, but with a smaller and
more targeted lexicon to increase accuracy. In
particular, we explore the Kaldi Speech
Recognition Toolkit, written in C++ and licensed
under the Apache License v2.0, developed for
use by speech recognition researchers.2 This
toolkit was chosen on the grounds of
extensibility, minimal restrictive licensing,
thorough documentation (including example
scripts), and complete speech recognition system
recipes. We explore the ASR process used in
Kaldi and assess three extensions of the Kaldi
toolkit (Digits, VoxForge3 and CMU AN44). This
project demonstrates that Kaldi can be extended
in simple and complex situations and is flexible
and easy to use in development. Kaldi is a viable
choice for future extension.

[1] Gruhn et. al. “Automatic Speech Recognition.”
Statistical Pronunciation Modeling for Non-Native
Speech Processing, 2011.
[2] Povey, D., Ghoshal, A., Boulianne, G., Burget, L.,
Glembek, O., Goel, N., Hannemann, M., Motlicek, P.,
Qian, Y., Schwarz, P., Silovsky, J., Stemmer, G., and
Vesely, K. “Kaldi Speech Recognition Toolkit.” kaldi-
asr.org, 2011.
[3] “VoxForge: Open Source Acoustic Model and Audio
Transcriptions.” VoxForge, 2006-2017.
[4] “Sun Cluster Data Service for Sun Grid Engine Guide
for Solaris OS.” Oracle, 2010.
[5] “CMU Census Database.” Carnegie Mellon
University Audio Database, 1991.
[6] Chen, Berlin. “An Introduction to the Kaldi Speech
Recognition Toolkit.” National Taiwan Normal
University, 2014.
[7] Jackson, Zohar. “Free Spoken Digit Dataset (FSDD).”
2017.
[8] Chodroff, Eleanor. “Corpus Phonetics Tutorial:
Kaldi.” Northwestern University, 2017.
[9] Sundar Pichai. Google’s I/O Developer Conference,
2017.
[10] George Saon. “Recent Advances in Conversational
Speech Recognition.” IBM, 2016.
[11] Tanel Alumae. “Kaldi GStreamer server.” 2017.

Project Goals:
The ultimate end goal for this project is to
assess the viability of the Kaldi ASR Toolkit.2

Kaldi is a well-documented ASR toolkit that
aims to provide complete speech recognition
recipes to users. This system deals with the
entire ASR process, from WAV file to text
transcription. Kaldi seems the perfect solution to
the homegrown vs. outsourced debate.
Therefore, we explore extensions of Kaldi to
demonstrate the viability of the toolkit for use in
the team product.

Team Goals:
Our team is the Marvin AI Systems LLC
engineering team. The ultimate end goal for this
team is to develop a prototype system for ASR.
This system is meant for use as a personal
assistant in automobile shops.

This prototype must satisfy the following
requirements:
• Lightweight and minimal
• Easy to develop and extend
• Maintains a balance between a homegrown

(self-owned, but more prone to bugs and less
extensive) and outsourced system (lack of
ownership, but more extensive and well-
tested)

• Accurate and fast (less than ten second wait
time)

Marvin AI
Systems LLC

Digits Extension
The digits extension is a simple example, designed to translate audio clips of spoken digits 0
through 9. It is inspired by a “For Dummies” tutorial on the Kaldi site.2 The audio data is
from the Jakobovski Free Spoken Digit Dataset,7 which provided a set of 1500 audio clips.
1000 clips (from speakers Nicolas and Theo) were used for training and 500 clips (from
speaker Jackson) for testing. Each digit is spoken 150 times between the three speakers. This
example required script-generated language and acoustic data in order to characterize the
lexicon, phonetic mappings, etc. expected from the audio data. The Kaldi system uses this
data as input (see Fig. 1).

model (including a huge speech corpus), initially set up to collect transcribed speech for use
with Free and Open Source Speech Recognition Engines.3 This example was particularly
interesting because it was much more complex than introductory examples: it had a lexicon
of ~16,000 words and required the use of the Sun Grid Engine4 for parallelization (requiring
extensive configuration). The complexity of this system greatly increased its error rate
(optimal: 22.53%, triphone last pass).

CMU AN4 Extension
The CMU AN4 (the Alphanumeric database)5 is a series of census data recorded at CMU in
1991. This data was used to create a system capable of recognizing alphanumeric queries.
This example provided insight as to how non-formatted audio and acoustic data can be
funneled into Kaldi. A script was written to retrieve the dataset from the CMU site, renaming
and sorting it into training and testing folders. This script also extracted the lexicon, phones,
transcriptions, etc. from the /etc files. Because this system has such a small lexicon and a
large training set, it yielded a low word error rate (optimal: 6.27%, triphone last pass).

In Figure 4 below, we can see how the error rates from these Kaldi examples line up with
current error rates for on-the-market systems. It should be noted that the comparison is not
necessarily between completely similar systems – Google and Cortana are on much larger
scales, designed to recognize all possible input (as opposed to our customized systems). In
Figure 5, we can see how the training dataset size must increase with the lexicon size to
maintain a reasonable word error rate for the system.

Given the flexibility demonstrated by the Kaldi
toolkit, it is safe to say that further extensions
and explorations will be possible. The ideal case
will involve the incorporation of a large, custom
training dataset, which we have shown to be
possible. Another important extension will be
real-time encoding – right now, this system is
geared towards static, already-recorded datasets.
Our product will require a dynamic system that
can accommodate real-time decoding. Such
examples are clearly possible, as indicated by the
Kaldi Online Decoding Tutorial2 and the Kaldi
GStreamer (a real-time speech recognition server
implemented using Kaldi and readily available
on Github).11 It should be noted that a variety of
elements were not considered in this analysis,
including speed. Future explorations must
confirm that Kaldi real-time decoding is capable
of supplying speech-to-text results in under ten
seconds (given our custom dataset). The
information we have seen so far, however,
indicates that Kaldi is capable of providing
accurate and flexible solutions to the problem of
speech recognition.

0
5
10
15
20
25

Word	Error	Rates	(%)	Across	
Various	Kaldi	Examples

1

10

100

1000

10000

100000

Digits CMU	AN4 VoxForge

WER,	Lexicon	Size	&	Dataset	Size	Across	
Various	Examples	

WER	(%) Amt.	Training	Data	(MB) Lexicon	Size	(#	words)

Initial Assessment of Kaldi

Requirements

Easy to use

- Well-documented
- Has extensive support system

(Git, Kaldi homepage, help
pages)

- Many examples (including
VoxForge, AMI, and Fisher)

- Requires knowledge of shell
coding5

- Not initially designed for
“casual use” (meant to be
used by full-time speech
recognition researchers)2

Extensible

- Can reasonably build off of
examples

- Built specifically for
extension with new
datasets/models

- Complex extension requires
intimate knowledge of Kaldi
system

- Commands change
frequently5

Partly homegrown

- Extensions possible through
customized scripting

- Customization leaves room
for suboptimal
configurations

- Potentially buggy

Partly outsourced
- Extensive toolkit for feature

extraction, decoding, etc.
- Open license (limited legality

concerns)2

- Less intimate knowledge of
system

Figure 2: Assessing the viability of Kaldi (note that speed was not considered in this analysis)

An initial assessment of Kaldi (see Figure 2) reveals it to be a viable system for the
desired product. Kaldi includes a variety of utility scripts, including functionalities such
as feature extraction, data preparation, transition modeling, construction of decoding
graphs, and acoustic modelling. Extensions of Kaldi can incorporate custom training
and testing data and use the corresponding lexicon. These extensions can still utilize the
provided scripts, substituting in various decoding types, language models, etc.

The decoding results were produced for two
types of training, triphone and monophone
(where the former includes contextual
information, but the latter does not).8 The
decoding results for the training set were
compared against the expected results (log
examples shown in Figure 3) to produce a
series of Word Error Rates for the ASR
system. Because of the small lexicon and
relatively large dataset, the word error rate
for this example was low (optimal: 9.6%,
triphone).

VoxForge Extension
VoxForge is an open source acoustic

Figure 3: A sample log from the digits example, showing
transcriptions for several audio files of the number “7”

Figure 1: Layout of Kaldi Toolkit (based on NTNU
diagram and Kaldi documentation).2,5 Note that this
diagram is hugely simplifying – optimizations and
adjustments (e.g., using alignments) are not shown.

The general layout of the Kaldi Toolkit is
displayed in Figure 1. It accepts a set of
customizable audio data as input, along with
accompanying language and acoustic data.
This data is used to generate a decoding
graph (of the HCLG format; see Fig. 1) and
final GMM model. These pieces (HCLG.fst
and final.mdl) can be fed into the decoder,
along with testing features to produce
transcriptions.2 Of primary interest to us is
the customizable input. In each extension,
we have to define:
• Audio data(training and testing)
• Acoustic data
• spk2gender: <speakerID><gender>
• wav.scp: <utteranceID> <file_path>
• text: <utteranceID> <transcription>
• utt2spk: <utteranceID> <speakerID>
• corpus.txt: <transcription>

• Language data
• lexicon.txt: <word> <phone(s)>
• nonsilence_phones.txt: <phone>
• silence_phones.txt: <phone>
• optional_silence.txt: <phone>

• (Optional) Configuration
• (Optional) Language model toolkit

Training
audio	data

Language	&	
Acoustic	Data
Transcriptions

Lexicon
Speaker data

Decoding	Graph
GMM	Models
(Trained	using	

training	
dataset)

H: HMM definitions
C: Context
L: Lexicon
G: Grammar &
language model

Kaldi	Decoder

Transcription
(for	entire	testing	dataset)

Testing	
audio	data

Kaldi	Training	Tools

Figure 4: Word Error Rates in Kaldi examples
compared to readily available systems9,10

Figure 5: Word Error Rates, lexicon size and
dataset size across Kaldi Examples (log scale)

